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Abstract. We propose a minimizing movement model for quasi-static brittle crack evolution. Cracks
(fissures) appear and/or grow without any prescription of their shape or location when time-dependent
displacements are imposed on the exterior boundary of the body. We use an energetic approach based
on Mumford–Shah type functionals. By the discretization of the time variable we obtain a sequence
of free discontinuity problems.

We find exact solutions and estimations which lead us to the conclusion that in this model crack
appearance is allowed but the constant of GriffithG and the critical stress which causes the fracture
in an uni-dimensional traction experiment cannot be both constants of material.

A weak formulation of the model is given in the frame of special functions with bounded de-
formation. We prove the existence of weak constrained incremental solutions of the model. A partial
existence result for the minimizing movement model is obtained under the assumption of uniformly
bounded (in time) power communicated to the body by the rest of the universe.

The model is of applicative interest. A numerical approach and examples, using an Ambrosio–
Tortorelli variational approximation of the energy functional, are given in the last section.

Mathematics Subject Classifications (1991):73M25, 58E30, 49M10.

Key words: brittle fracture propagation, free discontinuity problems, minimizing movements, vari-
ational approximation, functions with bounded deformations.

1. Introduction

This paper concerns the study of quasi-static brittle crack evolution. We work under
the following assumptions: a linear elastic body, with or without initial cracks
inside, evolves in a quasi-static manner under an imposed path of boundary dis-
placements. During its evolution cracks with unprescribed geometry may appear
and/or grow.

The difficulty of brittle crack propagation problems consists in the nature of the
main unknown: the crack itself, at various moments in time. The research in this
field concerns mainly the constitutive behavior of a brittle material, like the basic
paper of Griffith [27]. Amongst the basic references we can quote: Eshelby [24],
Irwin [30], Gurtin [28], [29], Rice [38].

In almost all the studies the geometry of the crack is prescribed. There are few
exceptions, as the papers of Ohtsuka [34–37] or Stumpf and Le [39]. The geometry
of the crack can be prescribed in a strong form, like in the case of a plane rectangu-
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Figure 1. Example of image segmentation with the Mumford–Shah functional. The left figure
is a black-and-white copy of a Van Gogh’s painting; in the right figure we see the set of edges.

lar or elliptic crack which is supposed to remain plane rectangular or elliptic during
its growth. We find a weak prescription upon the evolution of the crack in the case
of a body with two-dimensional configuration, when the crack is supposed to have
only an edge, which is a point. Therefore, in this case, the evolution of the crack
is conveniently reduced to the movement of a point. Under these assumptions the
geometrical nature of the main unknown is obscured.

A new direction of research in brittle fracture mechanics begins with the article
of Mumford and Shah [33] regarding the problem of image segmentation. This
problem, which consists in finding the set of edges of an image and constructing a
smoothed (away from the edges) version of that image, turns out to be intimately
related to the problem of brittle crack evolution.

In the article mentioned above Mumford and Shah propose the following vari-
ational approach to the problem of image segmentation: letg:� ⊂ R2→ [0,1] be
the original picture, given as a distribution of grey levels (1 is white and 0 is black).
Let u:�→ R be the output picture and letK be the set of edges of the objects in
the picture.K is (contained in) the set whereu has jumps, i.e.u ∈ C1(� \K,R).
The pair formed by the smoothed pictureu and the set of edgesK minimizes then
the functional

I (u,K) =
∫
�

α|∇u|2 dx +
∫
�

β|u− g|2 dx + γH1(K). (1)

The parameterα controls the smoothness away from the edges of the new picture
u, β controls theL2 distance between the smoothed picture and the original one
andγ controls the total length of the edges given by this variational method. The
authors remark that forβ = 0 the functionalI might be useful for an energetic
treatment of fracture mechanics. In the followings is presented a model of brittle
crack appearance in the case of imposed boundary displacements.

The state of a brittle body with reference configuration� is described by a pair
displacement-crack.(u,K) is such a pair if:
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(1) K is a crack in the body, seen as a surface,
(2) u is a displacement of the body with the crackK ⊂ �, compatible with the

imposed boundary displacementu0, i.e.u ∈ C1(� \K) andu = u0 on ∂�.

The total energy of the body in the state(u,K) is a Mumford–Shah functional
of the form

E(u,K;u0) =
∫
�

w(∇u)dx + F(u0,K).

The first term of the functionalE represents the elastic energy of the body with the
displacementu. The second term represents the energy consumed to produce the
crackK in the body, with the boundary displacementu0 as parameter.

In this model the brittle crack appearance is seen as an equilibrium problem.
When the displacementu0 is imposed on the (exterior) boundary∂� the state
(v, S) of the brittle body is a minimizer of the total energyE(·, ·, ;u0). The crack
predicted by the model isS. Notice thatS may be the empty-set; in this case the
model predicts that no crack appears whenu0 is imposed.

Brittle crack appearance and image segmentation are free discontinuity prob-
lems. The unknowns, the crack or the collection of edges, are discontinuity surfaces
for the displacement field or for the smoothed image; their location is entirely
unprescribed.

We shall use an energetic approach to quasi-static brittle crack evolution. There-
fore, we proceed to a time discretization which transforms the problem of crack
evolution into a sequence of energy minimization problems. Francfort and Marigo
[26] proceed in the same way in the case of brittle brutal damage evolution. How-
ever, it is only a belief that when the time step goes to zero, the discretized evolution
converges to an almost continuous (in time) evolution. We have found in the frame
of generalized minimizing movements, introduced by De Giorgi [20], stronger
mathematical reasons to support this belief. That is why we introduce in Section 2
the notion of energy minimizing movement as a particular case of a generalized
minimizing movement.

In Section 3, after the preliminaries concerning the statics of a brittle body, the
Griffith criterion of brittle crack propagation is presented in Subsection 3.3, as a
selection criterion amongst all possible crack evolutions. At the end of this section
we formulate the problem of quasi-static brittle crack evolution in the form (14).

In Subsection 4.1 we give an energy minimizing movement formulation to this
problem using a Mumford–Shah energy functional (Definition 4.1). In this model
we have only one material constant connected to fracture, namely the constant of
Griffith G. Some features of the model are explored in Subsection 4.2 in the anti-
plane and uni-dimensional cases. We prove that crack appearance is allowed (we
refer to [18] for more information, especially concerning fiber-matrix debonding
in composites). The relation (23) contains the expression ofσc, the critical stress
which lead to fracture in an uni-dimensional traction experiment. We infer from
this relation thatσc andG cannot be both constants of material in this model.
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Section 5 concerns the weak formulation of the incremental (that is discretized
in time) model of crack evolution introduced in Definition 4.1. Subsection 5.1 deals
with special functions with bounded variation or deformation. The existence of
weak constrained incremental solutions of the model (Definition 5.1, Theorem 5.3)
is a consequence of more general results due to De Giorgi and Ambrosio [21],
Ambrosio [1–2], Bellettini, Coscia and Dal Maso, [15], Ambrosio, Coscia and
Dal Maso [6]. The anti-plane case is discussed in Subsection 5.3. We compare the
notions of weak (according to Definition 5.1) and strong (Definition 4.1) solution
in Subsection 5.4.

In Section 6 a comparison is made with the model of Ambrosio and Braides [4],
also based on generalized minimizing movements. In this model viscosity forces
are introduced and crack propagation under imposed constant boundary displace-
ment is allowed; on the contrary, crack appearance can not occur in a physically
acceptable way.

In Section 7 we prove a partial existence result of the energy minimizing move-
ment described in the model, under the assumption of uniformly bounded power
communicated by the rest of the universe to the body during its evolution.

Section 8 is devoted to the numerical approach to the model. We use here func-
tional convergence results of Ambrosio and Tortorelli [11–12] and the numerical
method of Richardson and Mitter [32].

This paper continues a part of the work [17].

2. General Energy Minimizing Movements

An energy minimizing movement is a particular case of a generalized minimizing
movement. The latter notion has been introduced by De Giorgi in [20], inspired
by the paper [13] of Almgren, Taylor and Wang. The definition of a generalized
minimizing movement (according to Ambrosio [3]) is presented below

DEFINITION 2.1. LetS be a topological space and

F : (1,+∞)×N × S × S → R ∪ {+∞}

be a function. For anyu0 ∈ S, a functionu: [0,+∞) → S is a generalized
minimizing movement associated toF with initial datumu0, and we writeu ∈
GMM(F, u0), if there exists a diverging sequence(si)i∈N , si > 1, and there are
functionsui:N → S such that:

(i) ui(0) = u0;
(ii) for any k ∈ N and anyi, ui(k + 1) minimizes the functional

v 7→ F(si, k, v, ui(k))

overS;
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(iii) for any t > 0, ui([si t])→ u(t) in S asi →+∞.

As the name tells, the notion of a generalized minimizing movement extends
the notion of minimizing movement. WithS, F andu0 ∈ S as in Definition 2.1,
u: [0,+∞) → S is a minimizing movement associated toF with initial datum
u0, and we writeu ∈ MM(F, u0), if there are functionsus(k), for anys > 1 and
k ∈ N , such that:

(i) us(0) = u0;
(ii) for any k ∈ N and anys ∈ (0,+∞), us(k + 1) minimizes the functional

v 7→ F(s, k, v, us(k))

overS;
(iii) for any t > 0, us([st])→ u(t) in S ass →+∞.

The canonical example of (generalized) minimizing movement is given by the
choice:S = Rn, f :Rn→ R Lipschitz continuous andC2 and

F(s, k, u, v) = f (u)+ s
2
|u− v|2.

In this case, for anyu0 ∈ Rn there is only one minimizing movement, namely the
unique solution of the Cauchy problem

u′(t) = −∇f (u(t)), u(0) = u0.

Notice that the minimizing movement associated toF and u0 might not be
unique, mainly because the functionalv 7→ F(s, k, us(k), v) may have more than
one minimizer. The nonuniqueness of a generalized minimizing movement is of
higher order, because there might be different generalized minimizing movements
depending on the choice of the diverging sequencesi. For examples and techniques
of investigation of the setsMM(F, u0) andGMM(F, u0) we refer to Ambrosio
[3].

An energy minimizing movement is a generalized minimizing movement asso-
ciated to a particular functionF . It is designed to be a ‘weak stable’ solution of an
evolution problem of the following type

A(u(t), α(t), t) = 0, ∀t > 0

d

dt
α(t) 6 L (α(t), u(t)), ∀t > 0

u(0) = u0, α(0) = α0.

(2)

There are two unknowns in this problem:u andα. The evolution of the unknown
u is quasi-static. Suppose that we don’t have a proper law of evolution ofα, or that
the law of evolution that we have gives too many solutions. We may assume that we
have the expression of the total energyf (u, α) of the system in the state(u, α) and
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a set of constraints, not in a differential form, upon the evolution ofα. We make
then a time discretization with time stepδ and recursively find(uδk+1, α

δ
k+1) from

(uδk, α
δ
k), by a minimization process of the total energyf under some constraints.

A weak stable solution of the previous problem is a limit of sequences(uδk, α
δ
k)k

when the time stepδ converges to 0.
In the next definitionS may be seen as the space of all pairsx = (u, α),

endowed with a topology.

DEFINITION 2.2. LetS be a topological space and

F : (1,+∞)×N × S × S → R ∪ {+∞},
F (s, k, x, y) = f (s, x, y) + ψ(k/s, y)

be a function, withf :N × S × S → R andψ : [0,∞) × S → {0,+∞}. For
any x0 ∈ S, an energy minimizing movement associated to the energyf with
the constraintsψ and initial datumx0 is any generalized minimizing movement
x: [0,+∞)→ S, x ∈ GMM(F, x0).

Let us denote byS(λ) the following set

S(λ) = {y ∈ S:ψ(λ, y) = 0}.
From Definition 2.2 we notice thatx: [0,+∞) → S is an energy minimizing

evolution associated tof , with the constraintsψ and initial datumx0 if there exists
a diverging sequence(si)i∈N , si > 1, and there are functionsxi:N → S such that:

(i) xi(0) = x0;
(ii) for any k ∈ N and anyi ∈ N , xi(k + 1) minimizes the functionalf over the

setS(k/si) (in particularxi(k + 1) belongs toS(k/si));
(iii) for any t > 0, xi([si t])→ x(t) in S asi →+∞.

3. Notations and Preliminaries

3.1. NOTATIONS AND CONSTITUTIVE ASSUMPTIONS

The open bounded set� ⊂ R3 represents the reference configuration of an elastic
body andu:� → R3 is the displacement field of the body. We shall always sup-
pose, without mentioning further, that the open set� and its closure have the same
topological boundary.

The expression of the elastic (or free) energy of the body is∫
�

w(∇u)dx.

The first Piola-Kirchhoff stress tensorS is

S(u) = dw

d∇ (∇u)
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and the equilibrium equation of the body in the absence of volumic forces is

divS(u) = 0 in �.

In this paper we suppose that the body is linear elastic and homogeneous, i.e. the
functionw(∇u) has the form

w(∇u) = 1
2C∇u:∇u,

with the elasticity 4-tensorC having the symmetries

Cijkl = Cjikl = Cklij .
Under these assumptions the stress tensorS becomes the Cauchy stress tensor

σ = σ (u) = C∇u = Cε(u),
whereε(u) is the symmetric part of∇u, i.e.

ε(u) = 1
2(∇u+ (∇u)T ).

We suppose moreover thatw satisfies the growth conditions

∀ F ∈ R9, F = FT , c|F|2 6 w(F) 6 C|F|2,
wherec andC belong to(0,+∞).

In the cases of plane or anti-plane displacements the domain� ⊂ R2 represents
a section in the cylindrical reference configuration of the body�×R and the body
is supposed to be isotropic.

If u:� → R2 is a plane displacement then the displacement relative to the
three-dimensional configuration of the body has the following expression

(x1, x2, x3) ∈ �× R 7→ (u1(x1, x2), u2(x1, x2),0) ∈ R3.

The anti-plane displacement is a functionu:� → R. The three-dimensional
displacement has the following form

(x1, x2, x3) ∈ �× R 7→ (0,0, u(x1, x2)) ∈ R3.

In this case the elastic energy takes the form∫
�

µ|∇u|2 dx,

whereµ is one of the two Lamé’s constants.
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3.2. STATICS OF A FRACTURED ELASTIC BODY

For any measurable setB ⊂ Rn, |B| = Ln(B) denotes the Lebesgue measure of
B andH k(B) thek-dimensional Hausdorff measure ofB.

By a crack set in the body� we mean (according to Ball [14]) a topologically
closed countably rectifiable set, generically denoted byK. We shall always suppose
thatK is a subset of�.

Given the functionf , a pointx ∈ � ⊂ Rn and an unit vector (or direction)
n ∈ Rn, the approximate limit off in x associated to the directionn is denoted by
f̃ (x,n) and it is defined by the following expression

lim
ρ→0+

∫
Bρ(x)∩{y: (y−x)·n>0} |f (y)− f̃ (x,n)|dy
|Bρ(x) ∩ {y : (y − x) · n > 0}| = 0. (3)

Given a field of unit vectorsx ∈ K 7→ n(x) normal toK, the lateral limitsf + and
f − of any functionf :� \K → Rn aref +:K → R andf −:K → R, defined by

f +(x) = f̃ (x,n(x)), f −(x) = f̃ (x,−n(x)).

This means thatf + andf − satisfy the equalities

∀x ∈ K, lim
ρ→0+

∫
Bρ(x)∩{y: (y−x)·n>0} |f (y)− f +(x)|dy
|Bρ(x) ∩ {y : (y − x) · n > 0}| = 0,

∀x ∈ K, lim
ρ→0+

∫
Bρ(x)∩{y: (y−x)·n60} |f (y)− f −(x)|dy
|Bρ(x) ∩ {y : (y − x) · n 6 0}| = 0.

Note that for anyx ∈ K the triplet(f +(x), f −(x),n(x)) is unique up to a change
of sign ofn and a permutation off +, f −, i.e.

(f +(x), f −(x),n(x)) ∼ (f −(x), f +(x),−n(x)).

We denote by[f ] = f + − f − the jump off overK. Notice that the tensor field
overK defined by[f ] ⊗ n is uniquely determined byf andK. If f takes values
in Rn then the same is true for the symmetric part of the tensor field defined above,
namely

{[f ] � n}ij = 1
2([f ]inj + [f ]jni).

The jump off over the crack setK can be described by the following measure

j(f,K) = [f ] � n dHn−1
K , j(f,K)(B) =

∫
B∩K
[f ] � n dHn−1. (4)

Consider a crack setK ⊂ � formed by a finite collection of smooth surfaces.
By a displacement compatible withK we mean a functionu:� \K → Rk (where
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k might be 1, 2 or 3) which isC1 and has continuous lateral limits onK. In this
section we shall consider the spaceW 1,2(� \K) as the set of weak displacements
compatible with the crack setK.

Let n be the dimension of the reference configuration�. For anyu0 ∈ H 1/2

(∂�,Rn) and for any crack setK, such thatHn−1(∂�\K) > 0, a solution (if any)
of the following problem

div σ (u) = 0, in � \K
σ+(u)n = σ−(u)n = 0, on K

u = u0, on ∂� \K
(5)

will be denoted byu = u(u0,K). The solution is unique up to rigid displacements
of � \ K equal to 0 on∂�. If K and∂� are such that a Korn inequality holds on
the spaceW 1,2(� \K), then the problem (5) has a solution. For this paper the fact
thatu(u0,K) is unique up to a class of rigid displacements is irrelevant, therefore
u(u0,K) will be called ‘the solution’ of the problem (5).

We use the same notation –u = u(u0,K) – in the anti-plane case, whenn = 2,
k = 1 and the problem (5) becomes

µdiv∇u = 0, in � \K,
(∇u)+n = (∇u)−n = 0, on K,

u = u0, on ∂� \K.
(6)

The solutionu(u0,K) of the problem (5) minimizes the functional

E(v) =
∫
�

w(∇v)dx

over the following set of weak displacements compatible with the crack setK and
the boundary displacementu0

{v ∈ W 1,2(� \K,Rn) : v = u0 on ∂� \K}.

By standard arguments the functional

v ∈ W 1,2(�,Rn) 7→
∫
�

σ (u(u0,K)) : ∇v dx

depends only on the trace ofv on ∂�, hence it gives raise to the linear continuous
function

T(K):H 1/2(∂�,Rn)→ H−(1/2)(∂�,Rn),
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〈T(K)u0, v〉 =
∫
�

σ (u(u0,K)) : ∇v′ dx for any v′ = v on ∂�. (7)

In the latter definition〈·, ·〉 is the duality product of the pair of spacesH 1/2(∂�,Rn)

andH−(1/2)(∂�,Rn).
The functionT(K) is called the Dirichlet-to-Neumann map of the elastic body

� with the crack setK. Under the assumptions concerning the symmetries of the
elasticity tensorC, the functionT(K) is self-adjoint, that is for anyu, v we have

〈T(K)u, v〉 = 〈T(K)v,u〉. (8)

In the same way the Dirichlet-to Neumann map associated to the problem (6) is
defined.

Finally, we remark that the elastic energy of the body can be expressed using
the Dirichlet-to-Neumann map. Indeed, we have∫

�

w(∇u(u0,K))dx = 1
2〈T(K)u0,u0〉. (9)

3.3. THE GRIFFITH CRITERION OF BRITTLE CRACK PROPAGATION

Let us consider in the elastic body� an initial crack setK0 which evolves and
becomes at the momentt the crack setKt . We assume that the crack set always
increases in time, i.e.,

∀0< t < t ′, Kt ⊂ Kt ′ . (10)

We suppose that the evolution of the body is quasi-static. At the momentt the
state of the body is characterized by the displacement-crack pair(u(t),Kt ), where
u(t) is the displacement of the body, compatible with the crack setKt . Let us
denote byu0(t) the trace ofu(t) on∂�. We have then the equalityu(t) = u(u0(t),
Kt). We make the assumption that the functiont 7→ u0(t) is sufficiently regular in
time.

The power given to the body by the rest of the universe at the momentt has the
following expression

P(t) =
∫
∂�

S(u(t))n · u̇0(t)dx = 〈T(Kt)u0(t), u̇0(t)〉.

Let us consider a given curvet 7→ (u(t),Kt), such that for anyt we haveu(t) =
u(u0(t),Kt). For a givent we introduce the following curve of displacements

∀τ > 0, ũ(τ ) = u(u0(t + τ),Kt ).
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ũ(τ ) represents the displacement of the body at the momentt + τ in the presence
of the crackKt . An easy calculation leads us to the equality

d

dτ

∫
�

w(∇ũ(τ ))dx|τ=0 = P(t). (11)

ThereforeP(t) represents the power consumed at the momentt by the body in or-
der to modify its displacement, constrained to follow the path of imposed boundary
displacementst 7→ u0(t), without any modification of the actual crack setKt .

The Griffith criterion of brittle crack propagation asserts that during the propaga-
tion of the crackKt the following inequality is true at any momentt

d

dt

{∫
�

w(∇u(t))dx +GHn−1(Kt )

}
6 P(t). (12)

HereG is the constant of Griffith, supposed to be a material constant.
The relation (12) can be written in a different form using the mapT(Kt ). Let us

assume that the crack evolution is smooth in the sense that the functiont 7→ T(Kt )
is differentiable, i.e., the Dirichlet-to-Neumann map varies smoothly in time. The
Griffith criterion takes the following form

1

2

〈
d

dt
[T(Kt )]u0(t),u0(t)

〉
+ 1

2〈T(Kt )u̇0(t),u0(t)〉

+1
2〈T(Kt )u0(t), u̇0(t)〉 +G d

dt
{Hn−1(Kt)}

6 〈T(Kt)u0(t), u̇0(t)〉.
The functionT(Kt ) is self-adjoint, therefore we obtain the following expression of
the Griffith criterion

1

2

〈
d

dt
[T(Kt )]u0(t),u0(t)

〉
+G d

dt
{Hn−1(Kt)} 6 0. (13)

Notice that we have the following equality

P(t)− d

dt

∫
�

w(∇u(t))dx = −1

2

〈
d

dt
[T(Kt )]u0(t),u0(t)

〉
.

The left-hand member of the previous equality is usually called the energy release
rate due only to the crack propagation.

u0(t) plays the role of a time-dependent parameter, since in the last inequality
u̇0(t) does not appear. As we have seen, this is a consequence of relations (8), (9)
and (12).
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The problem of quasi-static brittle propagation of an initial crack in an elastic
body under a time-dependent imposed displacementu0(t) is of the type (2). If we
put apart the constraint (10), we have the following formulation

u(t)− u(u0(t),Kt ) = 0, ∀t > 0,

1

2

〈
d

dt
[T(Kt )]u0(t),u0(t)

〉
+G d

dt
{Hn−1(Kt)} 6 0, ∀t > 0,

u(0) = u0, K0 = K.

(14)

4. The Model

In the left term of the Griffith criterion (12) there appears the time-derivative of an
energetic functional. Let us consider the setM of all admissible displacement-crack
pairs(u,K) with the following properties

(1) K ⊂ � is a crack set;
(2) u ∈ C1(� \K,Rn);
(3) for Hn−1-almost anyx ∈ K there exist the normaln(x) atK in x andu+(x),

u−(x).

Notice that the fieldn of normals induces an orientation in the neighborhood ofK.
The item (3) in the definition ofM can be replaced by imposing the existence of
tracesu+ andu− of u onK with respect to this orientation.

The Mumford–Shah energy functional overM has the following expression

I :M → R ∪ {+∞}, I (u,K) =
∫
�

w(∇u)dx +GHn−1(K). (15)

4.1. INTRODUCTION OF THE MODEL

According to Definition 2.2 and the constraint (10) we give an energy minimizing
movement formulation to the problem (14) using the functional defined in (15).

DEFINITION 4.1. Let us define the functions

J :M ×M → R,

J ((u,K), (v, L)) =
∫
�

w(∇v)dx +GHn−1(L \K),

9: [0,∞)×M → {0,+∞},

9(λ, (v,K)) =
{

0, if v = u0(λ) on ∂� \K
+∞, otherwise.
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We consider the initial data(u0,K) ∈ M such thatu0 = u(u0(0),K). For any
s > 1 we define the sequences

k ∈ N 7→ us(k), Ls(k), Ks(k),

(us(k), Ls(k)) ∈ M and(us(k),Ks(k)) ∈ M, recursively:

(i) (us, Ks)(0) = (u0,K), Ls(0) = K,
(ii) for any k ∈ N (us, Ls)(k + 1) ∈ M minimizes the functional

(v, L) ∈ M 7→ J ((us, Ks)(k), (v, L))+9((k + 1)/s, (v, L))

overM. In order to verify the constraint (10),Ks(k + 1) is defined by the
formula:

Ks(k + 1) = Ks(k) ∪ Ls(k + 1).

(u, L): [0,+∞) → M is an energy minimizing movement associated toJ
with the constraints (10),9 and initial data(u0,K), and we write(u, L) ∈
GMM(u0,K,9), if there is a diverging sequence(si) such that for anyt > 0
we have{

usi ([si t])→ u(t) in L2(�,Rn),

j (usi , Lsi )([si t])→ j (u, L)(t) weakly as Radon measures
(16)

asi →∞ and

Hn−1(L(t)) 6 lim inf
i→∞ H(Lsi ([si t])). (17)

In the previous definition 1/s is the step of the discretization of the time vari-
able. The approximate displacement of the body at the momentk/s is us(k). The
active crackat the same moment isLs(k) and thetotal crack is Ks(k). The state
of the brittle body is(us(k), Ls(k)) while Ks(k) takes account of the history of
fissuration. Any sequencek 7→ (us, Ls,Ks)(k) constructed using the rules (i) and
(ii) from the Definition 4.1 is called an incremental solution. We use the same
name for a sequence of displacement-crack pairsk 7→ (us, Ls)(k). Notice that in
rule (ii) the triplet (us, Ls,Ks)(k) appears in the expression of the functionalj

only throughKs(k).
The time step goes to 0 asi converges to∞ and the incremental solution(usi ,

Lsi )([sit]) converges to(u, L)(t), for any t > 0.L(t) is called theactive crackat
the momentt and

K(t) = ∪s∈[0,t ]L(s)
is called thedamaged regionof the body at the same moment. Notice that the
damaged regionK(t)might not be a crack set, because it isa priori a noncountable
union of surfaces.
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The convergence of the incremental solution to the energy minimizing move-
ment deserves a discussion. The measure j(u, L) associated to a displacement-
crack pair contains information about the placement and the opening of the crack
L under the displacementu. The weak convergence of j(usi ,Lsi )([si t]) to j(u, L)(t)
as Radon measures means that for anyφ ∈ C0(�,M

n×n) we have

lim
i→∞

∫
Lsi ([si t ])

([usi ([si t])] � n):φ dHn−1

=
∫
L(t)

([u(t)] � n):φ dHn−1.

Therefore (16) asserts that the incremental displacement converges to the displace-
ment at the momentt and (in a weak sense) the placement and the opening of
the incremental crack set converges to the placement and the opening of the active
crack set at the same moment. Generally j(u, L) is not null on the part ofL where
the jump ofu is not null, therefore this measure gives information only about the
opened crack. The role of the condition (17) is to control the area of the crackL(t),
in order to eliminate the parts of the active crack which are not opened.

4.2. FEATURES OF THE MODEL

We investigate further the behavior of the model proposed in Definition 4.1 in the
particular case of anti-plane displacements. There are some obvious adjustments
to be made.� is now a bounded domain inR2 and the displacement is a scalar
functionu. The functionalJ will take the form

J ((u,K), (v, L)) =
∫
�

µ|∇v|2 dx +GH1(L \K). (18)

For a displacement-crack pair(u, L) we introduce the notation

j(u, L) = [u]dH1
|L .

Let us consider a particular type of imposed displacement on∂�. We split the
boundary of the body into three parts

∂� = 01
u ∪ 02

u ∪ 0f ,
0iu ∩ 0f = ∅, 01

u ∩ 02
u = ∅, H1(01

u) ·H1(02
u) ·H1(0f ) > 0.

At any momentt > 0, 0f is force free, i.e. the displacement is not prescribed on
this part of the boundary. On01

u and02
u the imposed displacement is defined by

u0(t)(x) =
{

0 on 01
u

tδ on 02
u

,
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Figure 2. The geometry of the body and imposed displacement.

whereδ is a positive constant with dimension of speed. This displacement is ho-
mogeneous in the time variable

∀t > 0, u0(t) = tu0(1).

We suppose that at the momentt = 0 there are no cracks in the body. This
assumption takes the formK = ∅. At t = 0 we haveu0(0) = 0, hence the initial
data are(u0 = 0,K = ∅).

Let us consider a time discretization given by the parameter 1/s and the incre-
mental solutionk ∈ N 7→ (us , Ls)(k) introduced in Definition 4.1 for the initial
data and the imposed boundary conditions described above. In order to shorten the
notations we shall omit for the moment the superscripts.

The incremental solution(u, L):N → M is recursively defined by the follow-
ing two rules:

(i) u(0) = 0 andK(0) = ∅;
(ii) for any k ∈ N we seek to determine the crack setL(k+1) and the displacement

u(k + 1) such that(u(k + 1), L(k + 1)) ∈ M, u(k + 1) = (k + 1)/su0(1) on
(01

u ∪02
u) \L(k+ 1) and(u(k+ 1), L(k+ 1)) is a minimizer of the functional

(v, L) 7→ J ((u(k),K(k)), (v, L)),

where(v, L) ∈ M, v = (k + 1)/su0(1) on (01
u ∪ 02

u) \ L. The setK(k + 1) is
given by the formula

K(k + 1) = K(k) ∪ L(k + 1).

Let u∅ denote the displacement of the body�, without cracks, under the pre-
scribed displacement on the boundaryu0(1). With the use of a notation made
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earlier,u∅ is defined byu∅ = u(u0(1),∅). For anyk ∈ N we have(k/su∅,∅) ∈ M
andk/su∅ = k/su0(1) on01

u ∪ 02
u. Therefore, with the notation

Jk = J ((u(k),K(k)), (u(k + 1), L(k + 1)))

for anyk ∈ N we have

Jk 6 J ((u(k),K(k)), ((k + 1)/su∅,∅)).
The last inequality may be written as

Jk 6
(
k

s

)2 ∫
�

µ|∇u∅|2 dx, (19)

Jk =
∫
�

µ|∇u(k + 1)|2 dx +GH1(L(k + 1) \K(k)). (20)

We can always find a curve in� which is a length minimizer in the family of all
curves in� separating01

u from 02
u. Let us denote such a curve byS (which exists

but it might not be unique). The curveS splits the domain�

� = �1 ∪�2, 01
u ⊂ �1, 02

u ⊂ �2,

�1 ∩�2 = ∅, �1 ∩�2 = S.
We define the following displacement

uS(x) =
{

0 x ∈ �1

δ x ∈ �2.

It is easy to see that for anyk ∈ N the pair(k/suS, S) belongs toM andk/suS =
k/su0(1) on (01

u ∪ 02
u) \ S. We have therefore the inequality

Jk 6 GH1(S \K(k)), (21)

with Jk given by (20). From (21) we derive the following conclusion:for large time
k/s the crack setK(k) is not void.Indeed, suppose that the functionk ∈ N 7→
(k/su∅,∅) is an incremental solution constructed by the rules (i) and (ii) above.
Then for anyk ∈ N the inequality (21) becomes an equality and the inequality
(21) takes the form(

k

s

)2 ∫
�

µ|∇u∅|2 dx 6 GH1(S), (22)

which lead to a contradiction. Therefore this model can predict crack appearance.
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We get more information about the behavior of the model if we use it in the case
of an uni-axial traction experiment. The body with modulus of elasticityE has the
configuration� = (0, L) ⊂ R and any crack set is a finite collection of points
in the interval�, so the body is either undamaged or totally broken. The imposed
displacement at the timet is

u0(t) = tu0(1),

whereu0(1) = 0 atx = 0 andu0(1) = D atx = L. The functionJ ((u,K), (v, L))
takes the expression

J ((u,K), (v, L)) =
∫ L

0

1
2E(v

′(x))2 dx +G#(L \K),

where #(M) is the number of elements of the setM.
At the time k/s we have only two kinds of displacement-crack pairs which

compete. These are:

(1) (k/su∅,∅), whereu∅(x) = xD/L;
(2) (k/suS, S), whereS = {x1, . . . , xN } is a crack set anduS is a piecewise

constant function on[0, L] \ S such thatuS(0) = 0 anduS(1) = D.

For any displacement-crack pair(u,K) we have

J ((u,K), (k/suS, S)) =

 (k/s)2
∫ L

0

1
2E(u

′
∅)

2 dx if S = ∅,
G#(S \K) if S 6= ∅,

therefore among all pairs(k/suS, S) it is sufficient to consider only the pairs with
#(S) = 1 orS = ∅.

For small timek/s the body remains uncracked and for large timek/s a crack
appears in the body. Precisely, for smallk/s we have

(u(k),K(k)) = (k/su∅,∅)

and for largek/s we have

(u(k),K(k)) = (k/suS, S),

with #(S) = 1. An inequality similar to (22) leads us to an equation for the critical
time tc when the crack appears

t2c

∫ 1

0

1
2E(u

′
∅)

2 dx = G.
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We obtain the following expression of the uni-axial stressσc = tcEu′∅, existing in
the uncracked body when the model predicts its fracture:

σc =
(

2EG

L

)1/2

. (23)

We see that the stressσc and the quantityG cannot be both constants of material in
this model.

5. Existence of weak incremental solutions

5.1. THE SPACES SBV AND SBD

This section is dedicated to a brief voyage through the spacesSBV andSBD.
We use the notationµ � λ if the measureµ is absolutely continuous with

respect to the measureλ. For any measureµ we denote by|µ|(B) the variation of
µ over the Borel setB ⊂ �, defined by the relation

|µ|(B) = sup

{ ∞∑
i=1

|µ(Ai)| : ∪∞i=1 Ai ⊂ B,Ai ∩ Aj = ∅ ∀i 6= j
}
.

The measureµ has finite total variation (over�) if |µ|(�) < +∞.
BV(�,Rn) is the space of functionsu ∈ L1(�,Rn) with the distributional

derivativeDu representable as a vector measure with finite total variation. We refer
to the book of Evans and Gariepy [25] for the main properties of such functions.
The approximate limit ofu at the pointx ∈ � is thatũ(x) defined by the equality

lim
ρ→0+

∫
Bρ(x)
|u(y)− ũ(x)|dy
|Bρ(x)| = 0.

The Lebesgue set ofu is the set of points whereu has an approximate limit. The
complementary set is aLn negligible set denoted bySu. De Giorgi proved in [23]
that for anyu ∈ BV(�,Rn) the setSu is countably rectifiable. Moreover, forHn−1

almost everyx ∈ Su there is a triplet(u+(x), u−(x),n(x)) such that

(1) n(x) is a unit vector normal toSu atx;
(2) (u+(x),u−(x)) are the approximate limits ofu in x associated with the direc-

tion n(x) (for the definition see (3)).

This triplet is uniquely determined up to a change of sign ofn and an interchange
of u+, u−. The jump ofu acrossSu is [u] = u+ − u−; notice that the tensor field
[u] ⊗ n overSu is independent of the choice of the field of normalsn.

For anyu ∈ BV(�,Rn) the measureDu admits the decomposition into abso-
lute continuous and singular parts with respect to the Lebesgue measure dx:Du =
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Dau+Dsu. Calderon and Zygmund [19] theorem gives the following decompos-
ition of the measureDu into three mutually singular parts

Du = ∇u(x)dx + [u] ⊗ n dHn−1
|Su
+ C(u).

∇u is the approximate gradient ofu defined for almost everyx ∈ � by the equality

lim
ρ→0+

∫
Bρ(x)
|u(y)− u(x)−∇u(x) · (y − x)|dy

|Bρ(x)‖y − x| = 0.

The jump part ofDu is

Dju = [u] ⊗ n dHn−1
|Su
.

C(u) is called the Cantor part ofDu; for any Borel setB ⊂ � the quantityC(u)(B)
is defined byC(u)(B) = Dsu(B \ Su). We have therefore

Dau = ∇u dx, Dsu = [u] ⊗ n dH|K + C(u).
The spaceSBV(�,Rn) of special functions with bounded variation was intro-

duced by De Giorgi and Ambrosio in the study of a class of free discontinuity prob-
lems ([21], [1], [2]). A general reference toSBV and free-discontinuity problems
is Ambrosio, Fusco and Pallara [10]. This space is defined as follows:

SBV(�,Rn) = {u ∈ BV(�,Rn):|Dsu|(� \ Su) = 0}.
For anyu ∈ BV(�,Rn), u is a special function with bounded variation if and only
if the Cantor part ofDu is null.

For several versions of the compactness theorem inSBV we refer to the afore-
mentioned papers of De Giorgi and Ambrosio. We shall use this theorem in the
following form:

THEOREM 5.1.Let(uh)h be a sequence inSBV(�,Rk) andC be a constant such
that for anyh∫

�

|∇uh|2 dx +H(Suh)+ ‖uh‖L∞ 6 C.

Then there existu ∈ SBV(�,Rk) and a subsequence, still denoted by(uh)h, such
that 

uh→ u in L2(�,Rk),

∇uh→ ∇u weakly in L2(�,Mn×k),

Djuh→ Dju weakly as Radon measures,
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and

Hn−1(Su) 6 lim inf
h→∞ Hn−1(Suh).

A description of the space of special functions with bounded deformationSBD(�),
can be found in Ambrosio, Coscia and Dal Maso [6]. Any functionu ∈ L1(�,Rn)

belongs toBD(�) if Eu, the symmetric part of the distributional derivative ofu, is
representable as a vector measure with finite total variation.

For anyu ∈ BD(�) the measureEu decomposes with respect to the Lebesgue
measure into absolute continuous and singular parts

Eu = Eau+ Esu.
We denote by|Eu| the variation of the measureEu. Kohn introduced in [31] the
set2u

2u =
{
x ∈ �: lim sup

ρ→0+

|Eu|(Bρ(x))
ρn−1

> 0

}

and proved that it is countably rectifiable. LetJu be the subset of� of all points
x ∈ � such that there is a unit vectorν(x) with the property thatu has different
approximate limitsu+(x) = ũ(x, ν(x)), u−(x) = ũ(x, −ν(x)) defined by the
relation (3). It is straightforward thatJu ⊂ Su. However,Su may not be countably
rectifiable. In [6] it is proved that2u coincides withJu up to aHn−1 negligible
set, thereforeJu is countably rectifiable. The triplet(u+(x), u−(x), n(x)) exists for
Hn−1 almost everyx ∈ Ju, wheren(x) is the normal unit vector to2u at x; as
previously the tensor field overJu defined by[u] ⊗ n is uniquely determined. We
denote by[u] � n its symmetric part.

The difference betweenSu andJu is subtle. Let us quote only the fact that for a
functionu ∈ SBV(�,Rn) these sets coincide up to aH -negligible set.

The following decomposition theorem is due to Ambrosio, Coscia and Dal
Maso [6] and asserts that

Eu = ε(u)(x)dx + [u] � n dHn−1
|Ju
+ Ec(u).

Hereε(u) is the approximate symmetric gradient, defined for almost everyx ∈ �
by

lim
ρ→0+

1

ρn

∫
Bρ(x)

(u(y)− u(x)− ε(u)(x)(y − x)) · (y − x)
|y − x|2 dy = 0.

The jump part ofEu is

Eju = [u] � n dHn−1
|Ju

.
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Ecu is the Cantor part ofEu, that is the part ofEsu not concentrated onJu.
Therefore we have

Eau = ε(u)dx, Esu = Eju+ Ecu.
The definition ofSBD(�) is the following:

SBD(�,Rn) = {u ∈ BD(�):|Esu|(� \ Ju) = 0}.
We have the inclusion

SBV(�,Rn) ⊂ SBD(�).

For the compactness theorem inSBD we refer to Bellettini, Coscia and Dal
Maso [15]. We shall use this theorem in the following form:

THEOREM 5.2. Let us consider the function

F ∈ Mn×n
sym 7→ w(F) = (1/2)CF :F,

with C a positive definite symmetric 4-order tensor. Let(uh)h be a sequence in
SBD(�) andC a constant such that for anyh∫

�

w(ε(uh))dx +Hn−1(Juh )+ ‖uh‖L∞ 6 C.

Then there existu ∈ SBV(�,Rk) and a subsequence, still denoted by(uh)h, such
that 

uh→ u in L2(�,Rk),

ε(uh)→ ε(u) weakly in L2(�,Mn×n
sym ),

Ejuh→ Eju weakly as Radon measures,

and

Hn−1(Ju) 6 lim inf
h→∞ Hn−1(Juh).

5.2. EXISTENCE OF WEAK CONSTRAINED INCREMENTAL SOLUTIONS

In order to give a weak formulation of the model described in Definition 4.1 let us
weaken first the spaceM of displacement-crack pairs. We introduce the new set of
weak displacement-crack pairsM

M = {(u,K):K is σ -rectifiable,u ∈ SBD(�) and

|Esu|(� \K) = 0}. (24)
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Given(u,K) ∈M, the setK is countably rectifiable but it is not necessarily closed;
we have also weaker conditions on the regularity of the displacementu. A direct
consequence of (29) is that any (strong) displacement-crack pair(u,K) such that
u ∈ L∞(�,Rn) belongs to the setM.

Let us define the functionalJ, the weak version of the functionalJ introduced
at Definition 4.1:J: M ×M→ R,

J((u,K), (v, L)) =
∫
�

w(ε(v))dx +GHn−1(L \K). (25)

Before the introduction of the weak form of the function9 from the same defin-
ition, let us explain what we mean byu = u0 on the boundary of�. We consider,
for technical reasons, that there is an open bounded set3 with piecewise Lipschitz
boundary such that� ⊂ 3. The imposed boundary displacement isu0 ∈ SBD(3)
such thatJu0∩� = ∅. Then, for anyu ∈ SBD(λ), u = u0 on∂�means thatu = u0

in3 \�. We denote the set of all such functionsu by SBD(�,u0). The reason for
this choice of defining boundary conditions is that the spaceSBD(�,u0) is closed
in SBD(3) in theL2 convergence. Note thatSBD(�,u0) can be identified with a
subspace ofSBD(�) by the inclusion mapu 7→ u|�.

Let us consider a curve of imposed displacementsλ 7→ u0(λ) such that
‖u0(λ)‖L∞(3) < +∞. We impose a supplementary condition for a displacement
field u to be admissible at the timeλ, namely

‖u‖L∞(3) 6 ‖u0(λ)‖L∞(3). (26)

The space of allu ∈ SBD(�,u0(λ)) such that the constraint (26) holds will be
denoted bySBD∞(�,u0(λ)).

The function9̃, introduced instead of9, is defined as follows

9̃: [0,+∞)×M→ {0,+∞},

9̃(λ, (u,K)) =


0 if u ∈ SBD∞(�,u0(λ)) and

Hn−1(K \ Ju) = 0,

+∞ otherwise.

DEFINITION 5.1 (weak version of Definition 4.1). Let us consider the spaceM
endowed with the topology given by the convergence

(uh,Kh)→ (u,K) if uhL2→ u. (27)

Let us consider also the functionJ, the curve of imposed displacementst 7→ u0(t)

with the associated functioñ9 and the initial data(u0,K) ∈ M such thatu0 =
u(u0(0),K).

For anys > 1 we recursively define(us,Ks):N →M as:

(i) (us, Ks)(0) = (u0,K);
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(ii) for any k ∈ N (us, Jus )(k + 1) ∈M minimizes the functional

(v, L) ∈M 7→ J((us, Ks)(k), (v, L))+ 9̃((k + 1)/s, (v, L))

over M. In order to verify the constraint (10),Ks(k + 1) is defined by the
formula

Ks(k + 1) = Ks(k) ∪ Jus (k+1). (28)

An energy minimizing movement associated toJ with the constraints (10),̃9
and initial data(u0,K) is any (u, Ju): [0,+∞) → M having the property:
there is a diverging sequence(si) such that for anyt > 0 usi ([si t]) → u(t) ∈
SBD∞(�, u0(t)) in L2(�,Rn) as i → ∞. The active crack at the timet is
Ju(t) and the damaged region at the same instant is

K(t) = ∪s∈[0,t ]Ju(s).

Let us remark that the disappearance of the setLs(k + 1) from the definition of
the incremental solution (28) is only apparent, because if(us,Ls)(k+1)minimizes
the functional

(v, L) ∈M 7→ J((us, Ks)(k), (v, L))+ 9̃((k + 1)/s, (v, L))

then9̃((k + 1)/s, (us, Ls)(k + 1)) = 0, hence

Hn−1(K \ Ju) = 0.

From Theorem 5.2 we notice that functionals likeJ areL2 sequential lower
semi-continuous and coercive on closed setsV ⊂ SBD(�) of functions equally
bounded inL∞ norm. If we consider in particular the functional

v ∈ V 7→ J((us, Ks)(k), (v, Jv))

the following theorem is true by a trivial induction:

THEOREM 5.3 (existence of weak incremental constrained solutions).Let�,3 ⊂
Rn be bounded open sets with piecewise smooth boundary such that� ⊂ 3. Let

u0:N → SBD(3) ∩ L∞(3)

be a given sequence of imposed displacements such thatJu0(λ) ∩ � = ∅ and
let (u0,K) be a given admissible displacement-crack pair in� such thatu0 =
u(u0(0),K) on ∂�.

Then there exists a sequence(u,K):N →M such that:

(i) u(0) = u0 andK(0) = K;
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(ii) for anyk ∈ N there is(u(k+1), Ju(k+1)) ∈M, such thatu(k+1) = u0(k+1)
on∂� and(u(k + 1), Ju(k+1)) is a minimizer of the functional

(v, L) ∈M, v = u0(k + 1) on ∂� 7→ J((u(k),K(k)), v, L)).

The setK(k + 1) is given by the formula

K(k + 1) = K(k) ∪ Ju(k+1).

5.3. THE ANTI-PLANE CASE

In the anti-plane case we have to replaceSBD(�) by SBV(�,R). Let us consider
a larger domain� ⊂ 3 ⊂ R2, a boundary conditionu0 ∈ SBV(3,R) ∩ L∞(3)
andu ∈ SBV(3,R) such thatu = u0 in 3 \�. We don’t need the constraint (26)
because in this case we have a maximum principle. Indeed, with the notations

I (u) =
∫
�

µ|∇u|2 dx +GH1(Su),

u(x) =
{

u(x) if |u(x)| 6 ‖u0‖L∞(3),
‖u0‖L∞(3) otherwise,

we have the inequalityI (u) 6 I (u) and we notice thatu = u0 on3 \�.
The set ofSBV displacements compatible with the boundary displacementu0

is denoted bySBV(�,u0).
The set of weak displacement-crack pairs will be

N = {(u,K):K is σ -rectifiable,u ∈ SBV(�) and

|Dsu|(� \K) = 0}.
For a given path of imposed boundary displacementsλ 7→ u0(λ) ∈ SBV(3,R) ∩
L∞(3,R) we define

8̃: [0,+∞)×N → {0,+∞},

8̃(λ, (u,K)) =


0 if u ∈ SBV(�,u0(λ)) and

Hn−1(K \ Su) = 0,

+∞ otherwise.

With this setting we obtain the notion of a weak incremental solution in the case
of anti-plane displacements as in Definition 5.1. All we have to do is to replace
the spaceM by N , the function9̃ by 8̃ and Ju by Su. The existence of weak
incremental solutions is a consequence of Theorem 5.1.
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The partial regularity results of De Giorgi, Carriero and Leaci [22] tell us that
weak incremental solutions give raise to strong incremental solutions. The exist-
ence of incremental solutions is therefore true in the anti-plane case. ForHn−1-
smoothness ofSu, whereu is a minimizer of the Mumford–Shah functional, we
refer to Ambrosio and Pallara [7], Ambrosio, Fusco and Pallara [8], [9].

5.4. JUSTIFICATION OF THE WEAK FORMULATION

Let us compare the Definitions 4.1 and 5.1, where strong, respectively weak (con-
strained) energy minimizing movements were introduced.

We consider the Sobolev space associated to the crack setK (see [5])

W
1,2
K =

{
u ∈ SBV(�,Rn):

∫
�

|∇u|2 dx +
∫
K

[u]2 dHn−1 < +∞,

|Dsu| � Hn−1
|K

}
.

The following equality has been proved in [22]

W 1,2(� \K,Rn) ∩ L∞(�,Rn) = W 1,2
K (�,Rn) ∩ L∞(�,Rn). (29)

Therefore ifu = u(u0,K) andu ∈ L∞(�,Rn) thenu is a special function with
bounded variation. Also, if(u,K) ∈ M is a displacement-crack pair andu is
essentially bounded, thenu ∈ SBV(�,Rn) andSu ⊂ K. These inclusions may
lead to the introduction of the following space of weak displacement-crack pairs

M′ = {(u,K):K is σ -rectifiable,u ∈ SBV(�,Rn) and

|Dsu|(� \K) = 0}.
However the bulk part of the functionalJ (in weak formJ) controls only the sym-
metric part of the gradient of the displacement. This is the reason of considering
the larger spaceM defined at (24). In conclusion, the pair(u, L) is replaced by the
pair(u, Ju) (or, in the anti-plane case, by(u,Su)). The weak version of the measure
j(u, L) is thenEju (orDju in the anti-plane case).

The following proposition is a direct consequence of Theorem 5.2.

PROPOSITION 5.1.Letuh be a sequence inSBD(�)which converges inL2(�,Rn)

to u ∈ SBD(�) such that∫
�

w(ε(uh))dx +Hn−1(Juh )+ ‖uh‖L∞ 6 C (30)

for some constantC independent ofh. Then there exists a subsequence, still de-
noted byuh, such that{

ε(uh)→ ε(u) weakly inL2(�,Mn×n
sym ),

Ejuh→ Eju as Radon measures
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and

Hn−1(Ju) 6 lim inf
h→∞ Hn−1(Juh).

From this proposition we infer the following corollary

COROLLARY 5.1. Let us consider(u, Ju): [0,+∞)→M an energy minimizing
movement,(si) a diverging sequence and(us(k), Jus (k)) an incremental solution as
in Definition5.1, such that

usi ([si t])→ u(t) (31)

in L2(�,Rn) as i →∞, for anyt > 0. We have then{
Ejusi ([sit])→ Eju(t) as Radon measures

Hn−1(Ju(t)) 6 lim inf i→∞Hn−1(Jusi ([si t ])).
(32)

Therefore the relations (31), (32) are the weak version of (16). Moreover, we
notice that (32) is a consequence of (31). However, this is a priori true only in the
case of weakconstrainedenergy minimizing movements.

6. Introduction of Small Viscosity

In the paper [4] Ambrosio and Braides introduce a generalized minimizing move-
ment based model for the propagation of a crack in the presence of viscous forces
in the body. They give as initial datum att = 0 the anti-plane displacement
u0 ∈ SBV(�,R) ∩ L∞(�,R). For a givens they recursively define a sequence
(usk)k in SBV(�,R) and an increasing sequence of closed rectifiable sets(Ks

k )k as
follows: us0 = u0,Ks

0 = ∅ andusk+1 = w,Ks
k+1 = Sw∪Ks

k , wherew is a minimizer
of the functional

v 7→
∫
�

|∇v|2 dx +H1(Sv \Ks
k)+ s

∫
�

|v − usk|2 dx (33)

over the set of allv such that

v ∈ SBV(�,R), ‖v‖∞ 6 ‖u0‖∞.
The generalized minimizing movements obtained as limits of such incremental
solutions, whens diverges, correspond to the following situation: a body evolves
from the initial stateu0, with the initial crackSu0, under a constant imposed bound-
ary displacement. The equation of evolution for the displacement is

div∇u(t)+ u̇(t) = 0.
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The authors obtain an existence result for the generalized minimizing movement
introduced by them. After the introduction of the piecewise constant function

us(t) = us[st ],
they find the following uniform estimate

‖us(t ′)− us(t)‖L2 6 M
√
t ′ − t + 1

s
if t ′ > t. (34)

Therefore there exists a diverging sequence(si)i such thatusi converges tou uni-
formly in L∞([0, T ], L2(�,R)), for all T > 0 and

u ∈ C0,1/2([0,+∞);L2(�,R)). (35)

This result is obtained under the assumption of constant imposed boundary
displacement, equal to the trace on the boundary of the initial datumu0.

It is natural to introduce the Lamé constantµ and the viscosityλ in the expres-
sion of the functional (33) and modify it as follows

v 7→
∫
�

µ|∇v|2 dx +Hn−1(Sv \Ks
k)+ λs

∫
�

|v − usk|2 dx.

We obtain the more physical case of an anti-plane displacement satisfying at any
momentt the equation

divµ∇u(t)+ λu̇(t) = 0.

The estimate (34) becomes

‖us(t ′)− us(t)‖L2 6 M
√
t ′ − t + 1

λs
if t ′ > t.

We expect to obtain our model, in the case of anti-plane displacements, when the
viscosityλ converges to 0. It is easy to see that ifλ converges to 0 then the uniform
estimate from above is lost.

We notice that the crack appearance can not occur in this model in a physically
acceptable way.

Indeed suppose that for anyt > t ′ > 0 we have

Su(t ′) ⊂ Su(t).

This hypothesis means that the damaged region

K(t) = ∪s∈[0,t ]Su(s)
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is the active crackSu(t). We suppose moreover that the energy

E(t) =
∫
�

|∇u(t)|2 dx +H1(K(t))

is a decreasing function.
From the above suppositions, the compactness theorem inSBV and (35) we

infer that:

(a) the functiont 7→ E(t) is decreasing lower semicontinuous,
(b) the functiont 7→ H1(K(t)) is increasing lower semicontinuous,
(c) the elastic energy

t 7→
∫
�

|∇u(t)|2 dx

is a decreasing function (from (a) and (b)) and it is lower semicontinuous.

A straightforward consequence of items (a), (b), (c) is that for anyt the lateral
limits of the functions 7→ H1(K(s)) at the momentt are both equal to the value
H1(K(t)), that is the length of the crack grows continuously with time.

We mention however that we don’t know if for any minimizing movementu(t)

the energyE(t) decreases with time. Again from the compactness theorem inSBV
all we can prove is that for anyt < t ′ we have the inequalities

lim inf
i→∞ E(usi (t)) > lim inf

i→∞ E(usi (t ′)),

E(u(t)) 6 lim inf
i→∞ E(usi (t)), E(u(t ′)) 6 lim inf

i→∞ E(usi (t ′)),

where

E(u) =
∫
�

|∇u|2 dx +H1(Su).

7. A Partial Existence Result

The main open theoretical problem is the general existence of an energy minimiz-
ing movement according to our definitions. Below is described a partial existence
result based on a sound physical assumption (36). Nevertheless, we do not know if
(36) can be proved from the basic assumptions of the model.

THEOREM 7.1. Let us consider for any givens an incremental solutionk 7→
(us(k),Ks(k)) ∈ M, according to Definition4.1, such thatus(k) are equally
bounded inL∞. Let us suppose that the power communicated by the rest of the
universe to the body is uniformly bounded at any timet . The incremental form of
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this assumption consists in the existence of a constantP such that for anyk ands
we have

〈Tsk 1
2(u0((k + 1)/s)+ u0(k/s)),1u0(k, s)〉 6 P/s, (36)

whereTsk = T(Ks(k)) and1u0(k, s) = u0((k + 1)/s) − u0(k/s). Then for any
t > 0 there exist diverging sequences(si)i and(ki)i such thatki/si converges tot ,{

usi (ki)→ u(t) in L2(�,Rn),

j (usi , Lsi )(ki)→ j (u, L)(t) weakly as Radon measures
(37)

asi →∞ and

Hn−1(L(t)) 6 lim inf
i→∞ H(Lsi (ki)). (38)

Proof.For anyk ∈ N we introduce the displacement

vs(k + 1) = u(u0((k + 1)/s),Ks(k)).

From the minimality assumption on the incremental solution we have for any
k ∈ N the inequality

J ((us(k),Ks(k)), (vs(k + 1),Ks(k))) > J (k, s),

J (k, s) = J ((us(k),Ks(k)), (us(k + 1),Ks(k + 1))).

Also, becauseus(k) is uniformly (with respect tok and s) essentially bounded,
from the relation (29) and the minimality of the incremental solution we have
Hn−1(Ls(k) \ Jus (k)) = 0 for anys, k. The latter inequality means that∫

�

w(∇vs(k + 1))dx >
∫
�

w(∇us(k + 1))dx

+GHn−1(Ks(k + 1) \Ks(k)).

The crack growth conditionKs(k) ⊂ Ks(k + 1) implies that the latter relation can
be written as(∫

�

w(∇vs(k + 1))dx −
∫
�

w(∇us(k))dx

)
+
∫
�

w(∇us(k))dx +GHn−1(Ks(k))

>
∫
�

w(∇us(k + 1))dx +GHn−1(Ks(k + 1)).
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This is the incremental form of the Griffith criterion of crack propagation (12).
Indeed, we have∫

�

w(∇vs(k + 1))dx = 1
2〈T(Ks(k))u0((k + 1)/s),u0((k + 1)/s)〉,

∫
�

w(∇us(k))dx = 1
2〈T(Ks(k))u0(k/s),u0(k/s)〉,

therefore∫
�

w(∇vs(k + 1))dx −
∫
�

w(∇us(k))dx

= 〈T(Ks(k))1
2(u0((k + 1)/s)+ u0(k/s)),

u0((k + 1)/s)− u0(k/s)〉.
vs(k+ 1) represents the displacement of the body with the boundary displacement
u0(k/s+1/s) in the presence of the crackKs(k). us(k) represents the displacement
of the body with the boundary displacementu0(k/s) in the presence of the same
crackKs(k). According to (11), the quantity(∫

�

w(∇vs(k + 1))dx −
∫
�

w(∇us(k))dx

)/(
1

s

)
is the discretized expression of the power communicated by the rest of the universe
to the body at the timek/s, when a time discretization with step 1/s is considered.

We deduce from the inequality (39) that

P/s +
∫
�

w(∇us(k))dx +GHn−1(Ks(k))

>
∫
�

w(∇us(k + 1))dx +GHn−1(Ks(k + 1)).

We have therefore

Pk/s >
∫
�

w(∇us(k + 1))dx +GHn−1(Ks(k + 1)).

FromLs(k + 1) ⊂ Ks(k + 1) we infer that

Pk/s >
∫
�

w(∇us(k + 1))dx +GHn−1(Ls(k + 1)).

The latter inequality and the equally boundedness ofus(k) allow us to apply the
compactness Theorem forSBD 5.2. We deduce that for anyt > 0 there exist
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diverging sequences(si)i and(ki)i such thatki/si converges tot and(usi , Lsi )(ki)
converges to an element ofM (u, L)(t) in the sense of the relations (37), (38).

8. Numerical Approach to the Model

The models presented in this paper are of applicative interest. In order to use them
we have to know how to minimize a Mumford–Shah functional. This can be done
by approximating, in the sense of variational convergence, the original functional
by a volume integral. There are several ways to approximate the Mumford–Shah
functional by volume integrals (for a general reference we quote Braides [16]).
One idea is to replace the displacement-crack pair(u,K) with the pair (u, f ),
wheref is a smoothed version of the characteristic function of the crack setK,
taking values in the interval[0,1]. The original functional may be replaced by an
Ambrosio–Tortorelli approximation, introduced in [11], [12].

Let us consider, for giveng:�→ R andc > 0, functionals of the form

Ic(u, f ) =
∫
�

{
αφ(f )|∇u|2+ β(u− g)2+

+γ
[
cψ(f )|∇f |2+ f

2

4c

]}
dx. (39)

We suppose that the functionsφ, ψ have the following properties:

(a) ψ(x) > 0 for anyx ∈ (0,1];
(b)

∫ 1
0 2xψ1/2(x)dx = 1;

(c) φ(0) = 1,φ(1) = 0 andφ(x) ∈ (0,1) for anyx ∈ (0,1).
Under these assumptions it is known that whenc converges to 0 thenIc converges
in the variational sense (or0-convergence) to the Mumford–Shah functional

I (u) = α
∫
�

|∇u|2 dx + β
∫
�

|u− g|2 dx + γH1(Su). (40)

This result, due to Ambrosio and Tortorelli, tells us that for anyu ∈ SBV(�,R)
the followings are true:

(i) for any sequence(uh, fh, ch) such thatuh → u andfh → 0 in L2, ch → 0,
we have

lim inf
h→∞

Ich(uh, fh) > I (u);

(ii) there is a sequence(uh, fh, ch) such thatuh→ u andfh → 0 inL2, ch → 0,
and

lim sup
h→∞

Ich(uh, fh) 6 I (u).
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A consequence of this result is that if:

(i) (uh, fh) is a minimizer of the functionalIch andch→ 0; and
(ii) there is a functionu ∈ SBV(�,R) such thatuh→ u andfh→ 0 inL2,

thenu is a minimizer of the Mumford–Shah functionalI .
The numerical approach to the problem of minimizing the Mumford–Shah func-

tional consists in the replacement of this functional with an approximate functional
Ic. After a numerical minimization ofIc over a conveniently chosen set we obtain
a minimizing pair(uc, f c). The functionf c represents an approximation of the
characteristic function of the setSu, whereu is a minimizer ofI .

We shall use this idea for the model presented here, in the anti-plane case.
Instead of a sequence of incremental solutions(uh,Kh) we shall consider a se-
quence of pairs(uch, f

c
h ). The crack-growth conditionKh ⊂ Kh+1 will be replaced

by: f ch (x) 6 f ch+1(x) for any x ∈ �. Notice thatf ch is an approximation of the
characteristic function of the damaged region.

We shall not be concerned further with the regularity of the functions that we
are dealing with. We setM to be the space of all pairs of smooth enough functions
u:� ⊂ R2 → R, f :� → [0,1]. The numberc and functionsφ, ψ are given, as
well as a sequence of imposed boundary displacementsun0:0u ⊂ ∂�→ R. As for
the material constants, we setγ = G/µ, which has the dimension of a length.

DEFINITION 8.1. Let us define the functions

Jc:M ×M → R,

F(g) =
∫
�

{
8(g)|∇v|2+ γ

[
cψ(g)|∇g|2+ g

2

4c

]}
dx,

Jc((u, f ), (v, g)) =
{
F(g) if g > f,
+∞ otherwise,

9:N ×M → {0,+∞},

9(n, (v, g)) =
{

0 if (1− g)(v − un0) = 0 on 0u,

+∞ otherwise.

We consider the initial data(u0, f0) such thatu0 = u(u0
0,K) andf0 satisfies

sup{|f (x)− χK(x)|: x ∈ �} 6 c,
whereχK is the characteristic function of the setK.

We recursively define the sequence(uch, f
c
h ) as follows:

(i) (uc0, f
c
0 ) = (u0, f0);
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(ii) for any k ∈ N the pair(uck+1, f
c
k+1) minimizes overM the functional

(v, g) 7→ Jc((u
c
k, f

c
k ), (v, g))+ 9(k + 1, (v, g)).

For the approximate model described in Definition 8.1 we shall use the gradient
descent method described in Richardson and Mitter [32]. The domain� is discret-
ized in pixels and the various partial derivatives of functionsuc andf c are replaced
by finite differences. With the notation

J kc (u, f ) = Jc((uck, f ck ), (u, f ))
the gradient descent of the functionalJ kc has the form

u̇ = −Cu∂uJ kc (u, f ),
ḟ = −Cf ∂f J kc (u, f )

with variable controlsCu andCf . In order to respect the constraint9, after each
step of the descent a projection off on the convex set

{g:�→ [0,1]: g(x) > f ck (x) ∀x ∈ �}
is performed. The boundary condition for the displacementu is satisfied in the
usual way by setting the value ofu on the pixels of∂� equal to the value ofuk+1

0 .
The simplest choice for the functionsφ andψ is

φ(x) = (1− x)2, ψ(x) = 1.

Richardson and Mitter remark in [32] that the parameterβ (see (1)), which is
equal to 0 in Definitions 4.1 and 8.1, has a strong influence on the speed of the
gradient descent method they propose: smallβ causes low speed of the gradient
descent. In our problemβ is null and this causes a very slow rate of convergence.
There is an empirical reason for which the Mumford–Shah functional behaves
badly whenβ is zero, in the problem of crack evolution: unlike the case of image
segmentation, where the information is scattered all over�, in the problem of
crack evolution the displacement that causes the growth of the crack is a datum
concentrated on the boundary of�. The viscous force induced byβ should serve
to transport this information inside�.

For numerical reasons we shall mix our model with an Ambrosio and Braides
model with small, but not zero, viscosity. We replace the functionalJc by

J ∗c ((u, f ), (v, g)) = Jc((u, f ), (v, g))+ βs
∫
�

|v − u|2 dx.

The sequence of imposed boundary displacements(un0) is the discretized in time
version of a path of displacementsu0(t). For a fixed step of discretization 1/s we
have

un0 = u0(n/s).
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(c)(a) (b)

Figure 3. (a) The initial geometry of the body; (b) and (c) the aspect of the evolving cracks.

(c)(a) (b)

Figure 4. (a) The initial displacement of the body; (b) and (c) represent the displacement of
the body fractured as in (b) and (c) previous pictures.

In order to eliminate the effects of the viscosity we replace also the sequence(un0)

with the following one, for a given naturalP

∀n ∈ N, k ∈ {0,1, . . . P − 1}UnP+k
0 = un0.

Therefore at any timen/s, the boundary displacement becomesu0(n/s) and after
that it remains constant in the interval[n/s, (n+P)/s], in order to let the influence
of the viscosity to become negligible.

In Figure 1 we see how the Richardson and Mitter method works for the image
segmentation problem. Recall that the Mumford–Shah functional (1) is used. The
parametersα, β andγ have been left to our choice, in order to get a good result.

The results of the numerical method for a cylinder with a rectangular cross-
section of 0.1 m× 0.1 m are shown in the next four figures. We remove from this
cross-section small rectangles (Figures 3 and 4) or parts of ellipsis (Figures 5 and
6) and study what happened with the body obtained in this way during an imposed
path of boundary displacements. The material (carbon steel) has the constantγ =
G/µ = 0.0000025 m and it has a pure elastic behavior. The boundary conditions
are described further. The rectangular section is a square[0,0.1] × [0,0.1]. The
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(c)(a) (b)

Figure 5. (a) The initial geometry; (b) final aspect of the cracks; (c) final displacement.

(c)(a) (b)

Figure 6. (a) The initial geometry of the body; (b) final aspect of the cracks (c) final
displacement.

displacementun0 is imposed on the faces[0,0.1] × {0}, whereun0 is constant and
equal to 0, and[0,0.1] × {0.1}, where the displacementun0 is constant and grows
slowly with n, from the value 0 m to the value 0.0041 m. The other two faces are
force free.

The approximate characteristic function of the crack, i.e., the functionf :�→
[0,1] is represented with the following convention: there are 256 grey levels,
numbered from 0 (black) to 255 (white); the number 0 (no crack there) corresponds
to the level 255 and the number 1 (certainly a crack there) corresponds to the
level 0. We have a linear correspondence between the numbers from(0,1) and
the intermediary grey level. In this way we obtain a kind of picture of the shape of
the crack in the cross-section of the body. Therefore a pixel is black either if there
was no material there from the start, or if it belongs to the actual crack. Irrelevant
black pixels appear on the boundary of the picture, maybe as an effect of error
accumulation during the minimization process.

The displacement functionu is represented in the complete square cross-section,
but is irrelevant in the portions removed from the section. The representation was
made with the following convention: the 255 level (white) correspond to the max-
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(b)(a)

Figure 7. Examples of local minima.

imum value ofu and the 0 level (black) correspond to the minimum value ofu;
all the intermediary values ofu are represented as grey levels, with a linear law of
correspondence.

9. Final Remarks

This energetic approach to quasi-static brittle fracture propagation has the quality
that it does not contain any prescription of the shape or location of the cracks. We
have seen that the model provides a way of working with cracks which suddenly
appear in the body. We have partially investigated this feature of the model and we
have concluded that the model is not compatible with a critical stress based model
of damage of an elastic body.

In this paper we did not study the bifurcation of an existing crack. A crack
bifurcates when its shape suffers a change of topology. The most common example
is a crack in a two-dimensional configuration, initially with only one edge in the
body, which develops in time new branches. During this phenomenon the number
of edges of the crack increases.

The numerical results presented in the last section have the following feature:
during the evolution of the crack new concentrations of the elastic energy density
do not appearin the interior of the body. It may seem that we have an example of
crack bifurcation in Figures 3(b) and (c), but the two branches from the top of the
Figure 3(b) do not grow simultaneously. We have noticed that a first crack grows to
the left until its edge reaches the boundary of the rectangle and, after that, a second
crack grows to the right.

There is no method to find the global minimum of a functional like the
Ambrosio–Tortorelli approximation. We have experimented with our programs for
a large variety of data. We have obtained from time to time solutions which were

207215.tex; 28/05/1999; 7:36; p.36



ENERGY MINIMIZING BRITTLE CRACK PROPAGATION 237

obviously local but not global minima. We have found that some of these local
minima loose old edges (Figure 7(a)), eventually developing instead new ones
(Figure 7(b)).

Our numerical results indicate that there is a sort of conservation law of ‘edges’
(i.e. maxima or singularities of the elastic energy density) of the solutions of the
model, asserting that during the evolution of the crack the number of these ‘edges’
can only decrease. If such a conservation law is true, it may be a consequence of
the fact that in the Mumford–Shah functional there is no term which controls the
creation of a new ‘edge’.
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