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Abstract

The resemblance between the Horn–Thompson theorem and a recent theorem by Dacorogna–Marcellini–
Tanteri indicates that Schur-convexity and the majorization relation are relevant for applications in the
calculus of variations and its related notions of convexity, such as rank one convexity or quasiconvexity.

In Theorem 6.6, we give simple necessary and sufficient conditions for an isotropic objective function to
be rank one convex on the set of matrices with positive determinant.

Majorization is used in order to give a very short proof of a theorem of Thompson and Freede [R.C.
Thompson, L.J. Freede, Eigenvalues of sums of Hermitian matrices III, J. Res. Nat. Bur. Standards B 75B
(1971) 115–120], Ball [J.M. Ball, Constitutive inequalities and existence theorems in nonlinear elastostatics,
in: R.J. Knops (Ed.), Nonlinear Analysis and Mechanics: Heriot–Watt Symposium, vol. 1, Res. Notes Math.,
17, Pitman, 1977, pp. 187–241], or Le Dret [H. Le Dret, Sur les fonctions de matrices convexes et isotropes,
CR Acad. Sci. Paris, Série I 310 (1990) 617–620], concerning the convexity of a class of isotropic functions
which appear in nonlinear elasticity.

Next we prove (Theorem 7.3) a lower semicontinuity result for functionals with the form
∫
� w(Dφ(x))dx,

with w(F) = h(ln VF ). Here F = RF UF = VF RF is the usual polar decomposition of F ∈ GL(n, R), and
ln VF is Hencky’s logarithmic strain.

We close this paper with a compact proof of Dacorogna–Marcellini–Tanteri theorem, based only on
classical results about majorization. The mentioned resemblance of this theorem with the Horn–Thompson
theorem is thus explained.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

There is a strong resemblance between the following two theorems. The first theorem is [11,
18, Theorem 1].

Theorem 1.1. Let X, Y be any two positive definite n × n matrices and let x1 � x2 � · · · � xn

and y1 � y2 � · · · � yn denote the respective sets of eigenvalues. Then there is a unitary matrix
U such that XU and Y have the same spectrum if and only if

k∏
i=1

xi �
k∏

i=1

yi, k = 1, . . . , n − 1,

n∏
i=1

xi =
n∏

i=1

yi.

The second theorem is Dacorogna–Marcellini–Tanteri [8, Theorem 20], see also Dacorogna
and Marcellini [7]. Rank one convexity and polyconvexity are fundamental notions in the calculus
of variations, briefly explained in Section 5.

Theorem 1.2. Let 0 � σ1(A) � · · · � σn(A) denote the singular values of a matrix A ∈ Rn×n.

For any string of given numbers 0 � a1 � · · · � an, we define the set of n × n matrices:

E(a) =
{

A ∈ Rn×n : σi(A) = ai, i = 1, . . . , n, det A =
n∏

i=1

ai

}
.

The following then holds:

PcoE = RcoE(a) =
{

A ∈ Rn×n :
n∏

i=ν

σi(A) �
n∏

i=ν

ai, ν = 2, . . . , n, det A =
n∏

i=1

ai

}
,

where PCo, Rco stand for polyconvex, rank one convex envelope.

Both theorems can be understood as describing the set {y : y ≺≺ x} where ≺≺ is a preorder
relation defined with the help of inequalities between products appearing in the formulations of
the theorems.

It turns out that a common framework of these apparently unrelated results is the notion of
majorization. This notion is familiar to mathematical fields like stochastic analysis, linear algebra,
Lie groups theory. In this paper, a first attempt is made to apply results connected to majorization
to elasticity and the calculus of variations. We shall obtain simpler proofs of known results and
new results as well.

It is significant to notice that most of the majorization results used in this paper are earlier or
contemporary with the fundamental paper of Morrey [15] on quasiconvexity. However, it seems
that there was not much interaction between these fields until now.

The content of this paper is described further. After the setting of notations in Section 2, Section
3 gives a brief passage through basic properties of the majorization relation. Section 4 lists some
properties of singular values and eigenvalues of matrices connected to majorization. In Section
5, rank one convexity, quasiconvexity and polyconvexity are introduced as fundamental notions
in the calculus of variations.
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This paper continues with four applications of the classical results mentioned in Sections 2–5.
The first application is in the field of nonlinear hyperelastic materials. Theorem 6.6 gives simple

necessary and sufficient conditions for an isotropic objective function to be rank one convex on
the set of matrices with positive determinant. The subject has a long history: the oldest citation
used in this paper is Baker and Ericksen [1].

As a second application, we use majorization in order to give a very short proof of a theorem
of Thompson and Freede [19], Ball [3], or Le Dret [13] (in this paper, Theorem 7.2).

We prove next (Theorem 7.3) a lower semicontinuity result for functionals with the form∫
� w(Dφ(x))dx, with w(F) = h(ln VF ). Here F = RF UF = VF RF is the usual polar decom-

position of F ∈ GL(n, R) and ln VF is Hencky’s logarithmic strain.
We close this paper with a proof of Dacorogna–Marcellini–Tanteri theorem, based only on

classical results about majorization. This explains the resemblance between Theorems 1.1 and
1.2. Related results can be found in [16] where Silhavy expresses Baker–Ericksen inequalities
using multiplication instead of division, too.

2. Notations

– A, B, . . . real or complex matrices;
– x, y, u, v, . . . real or complex vectors;
– gl(n, K) space of all n × n real (K = R) or complex (K = C) matrices;
– GL(n, K) space of all n × n invertible real or complex matrices;
– GL(n, R)+ the group of all n × n invertible real matrices with strictly positive determinant;
– Sym(n, R) the space of all n × n invertible, real, symmetric matrices;
– SO(n) the group of all n × n real orthogonal matrices with positive determinant;
– λ(A) the vector of eigenvalues of A;
– σ(A) the vector of singular values of A;
– A∗ the conjugate transpose of A;
– AT the transpose of A;
– diag(A) the diagonal of A, seen as a vector;
– Diag(v) the diagonal matrix constructed from the vector v;
– Sn the group of permutation of coordinates in Rn;
– Conv(A) the convex hull of the set A;
– ◦ function composition;
– f,i partial derivative of the function f with respect to the coordinate xi ;
– f,ij the second-order partial derivative of the function f with respect to the coordinates

xi, xj .

For any matrix A ∈ gl(n, C), the matrix A∗A is Hermitian. The eigenvalues of the square root
of A∗A are, by definition, the singular values of A. If the matrix A is Hermitian or real symmetric
and positive definite then we denote by ln A the logarithm of A.

Matrices are identified with linear transformations.
For a vector x ∈ Rn we denote by x↓, x↑ the vectors obtained by rearranging the coordinates

of x in decreasing, respectively, increasing orders.
Let f : A ⊂ R → R be an arbitrary function and n a strictly positive integer. We shall use the

notation f : An → Rn for the function

x = (x1, . . . , xn) ∈ An 
→ f (x) = (f (x1), . . . , f (xn)) ∈ Rn
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For example, the logarithm function f : (0, +∞) → R, f (x) = ln x, has associated the function
denoted by the same symbol ln : (0, +∞)n → Rn the function ln(x1, . . . , xn) = (ln x1, . . . , ln xn).

For any symmetric, positive definite, real matrix A let us denote by ln A the logarithm of A.
Then , with the notations made before, we have λ(ln A) = ln(λ(A)).

Finally, B(x, r) denotes the ball in Rn, of radius r > 0 and center x ∈ Rn. If � is an open,
bounded set in Rn, then |�| denotes its Lebesgue measure.

3. Basics about majorization

We have used Bhatia [4, Chapter 2] and Marshall and Olkin [14, Chapters 1–3]. The results
are given in the logical order.

Definition 3.1. The following majorization notions are partial order relations in Rn. Let x, y ∈ Rn

be arbitrary vectors. Then:

– x � y if xi � yi for any i ∈ {1, . . . , n}.
– x ≺w y if

∑k
j=1 xj

↓ �
∑k

j=1 yj
↓ for any k ∈ {1, . . . , n}. We say that x is weakly majorized

by y.
– x ≺ y if x ≺w y and

∑n
j=1 xj = ∑n

j=1 yj . We say that x is majorized by y.

The notion of majorization, the last in Definition 3.1, is the most interesting. See [14, Chapter
1], for the various places when one can encounter it.

Theorem 3.2 (Hardy, Littlewood, Polya). The following statements are equivalent:

(i) x ≺ y,

(ii) x is in the convex hull of Sny, where Sny is the set of all permutations of y,

(iii) for any convex function φ from R to R we have
∑n

i=1 φ(xi) �
∑n

i=1 φ(yi).

In the following definition, we collect various notions useful in the following (notably mono-
tonicity notions related to order relations).

Definition 3.3. Consider a map � defined from an Sn invariant set in Rn, with range in Rm. We
say that � is

– symmetric if for any P ∈ Sn there is P ′ ∈ Sm such that � ◦ P = P ′ ◦ �,
– increasing if x � y ⇒ �(x) � �(y),
– convex if for all t ∈ [0, 1], �(tx + (1 − t)y) � t�(x) + (1 − t)�(y),
– isotone if x ≺ y ⇒ �(x) ≺w �(y),
– strongly isotone if x ≺w y ⇒ �(x) ≺w �(y),
– strictly isotone if x ≺ y ⇒ �(x) ≺ �(y).

Any isotone � with range in R is called Schur-convex. Note that convexity in the sense of this
definition matches with the classical notion for functions � with range in R.

In particular a function f : A ⊂ Rn → R is symmetric if for any permutation matrix P ∈ Sn

we have P(A) ⊂ A and f ◦ P = f .
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The next theorem shows that symmetric convex maps are isotone.

Theorem 3.4. Let � : Rn → Rm be convex. If � is symmetric, then it is isotone. If in addition �
is monotone increasing, then � is strictly isotone.

In particular any Lp norm on Rn is Schur-convex. Not all isotone functions are convex, though.
Important examples are the elementary symmetric polynomials, which are not convex but they
are Schur-concave.

One can give three characterizations of isotone (or Schur-convex) functionsf : Rn → R. Before
that we need some notations.

Let us begin by noticing that the permutation group Sn acts on GL(n, R)+ as follows: for any
P ∈ Sn and any F ∈ GL(n, R)+ the matrix P · F ∈ GL(n, R)+ has components (P · F)ij =
FP(i)P (j).

Let

D = {x ∈ Rn: x1 � x2 � · · · � xn},
D′′ = {x ∈ Rn : x1 � x2 − x1 � · · · � xn − xn−1}.

Let h: Rn → R be a symmetric function. Then there is a unique function p:D′′ → R such that
for all x ∈ Rn we have

p

⎛
⎝( k∑

i=1

y
↓
i

)
k=1,...,n

⎞
⎠ = h(y).

Indeed, for given h the function p is defined by

p(y1, . . . , yn) = h(y1, y2 − y1, . . . , yn − yn−1).

The Schur-convexity of h is connected to the monotonicity of p. From the definitions we see
that h is Schur-convex if and only if p is increasing in the first n − 1 arguments. This leads to the
following theorem.

Theorem 3.5. Let A ⊂ Rn be symmetric and let f : A → R. Then f is Schur-convex if and only
if f is symmetric and

x1 
→ f (x1, s − x1, x3, . . . , xn)

is increasing in x1 � s/2, for any fixed s, x2, . . . , xn.

If in addition A = In where I is an open interval of R and f is continuously differentiable on
A, then f is Schur-convex if and only if one of the following assertions is true:

(a) (Schur) f is symmetric and for any i and for all x ∈ D ∩ In the function

t 
→ f,i(x1, . . . , xi + t, . . . , xn)

is decreasing.

(b) (Schur) f is symmetric and for all i /= j

(xi − xj )(f,i(x) − f,j (x)) � 0.

For weak majorization and strongly isotone functions we have the following theorem:
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Theorem 3.6. Let I be an open interval in R and let f : In → R:

(a) (Ostrowski) Let f be continuously differentiable. Then f is strongly isotone if and only if
f is symmetric and for all x ∈ D ∩ In we have Df (x) ∈ D ∩ Rn+, that is

f,1(x) � f,2(x) � · · · � f,n(x) � 0.

(b) Without differentiability assumptions, f is strongly isotone if and only if f is increasing
and Schur-convex.

4. Order relations for matrices

The results from this section have deep connections with Lie group theory. We shall give here
only a minimal presentation, for matrix groups.

The main references are again Bhatia [4, Chapter 2], and Marshall and Olkin [14, Chapter 3];
also Thompson [18]. The paper Kostant [12] gives an image of what is really happening from the
Lie group point of view.

Definition 4.1. We denote by P(n) the cone of Hermitian, positive definite matrices. In the class
of Hermitian matrices we define the preorder relation A � B by A − B ∈ P(n).

The order relation � between Hermitian matrices reflects into the order relation between the
eigenvalues as it is shown in the next theorem, belonging to Weyl (Theorem F1, Chapter 16, [14]).

Theorem 4.2 (Weyl). If A, B are Hermitian matrices such that A � B then

λ↓(A) � λ↓(B).

In [18] Thompson introduces the following preorder relation on GL(n, R)+:

X ≺ Y if ln σ(X) ≺ ln σ(y).

With the use of this relation, the Horn–Thompson Theorem 1.1, mentioned in the introduction
of this paper, can be reformulated as

Theorem 4.3 (Horn, Thompson, Theorem 1.1 reformulated). Let X, Y be any two positive definite
n × n matrices and let x1 � x2 � · · · � xn and y1 � y2 � · · · � yn denote the respective sets of
eigenvalues. Then there is a unitary matrix U such that XU and Y have the same spectrum if and
only if Y ≺ X.

Another interesting majorization occurs between the absolute value of eigenvalues and singular
values, respectively.

Theorem 4.4 (Weyl). For any matrix F ∈ GL(n, C) we have the inequality:

ln |λ(F )| ≺ ln σ(F ).

We end this section with two results of Fan (see [14, Theorem G.1, p. 241 and G.1.d p. 243]).

Theorem 4.5. (a) (Fan 1949) Let G, H be two Hermitian matrices. Then

λ(G + H) ≺ (λ
↓
1 (G) + λ

↓
1 (H), . . . , λ↓

n(G) + λ↓
n(H)).
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(b) (Fan 1951) if A and B are n × n matrices, then

σ(A + B) ≺w σ(A) + σ(B).

5. Notions of convexity in the calculus of variations

Morrey [15] introduced the notion of quasiconvexity in relation with the direct method in the
calculus of variations for functionals in integral form defined over Sobolev spaces.

Let m, n > 0 be given natural numbers, p ∈ [1, ∞] and � ⊂ Rm an open, bounded set with

piecewise smooth boundary. Let us consider the set W
1,p

(�, Rm) of all functions φ defined
almost everywhere (with respect to the Lebesgue measure) on �, with values in Rn, which are L1

integrable and with derivative in the sense of distribution being Lp integrable. The Sobolev space

W 1,p(�, Rm) is defined as the collection of equivalence classes of functions in W
1,p

(�, Rm)

with respect to equality almost everywhere in �.
By a well-known theorem of Lebesgue, for any element φ ∈ W 1,p(�, Rm) the limit

φ̄(x) = lim
r→0+

1

|B(x, r)|
∫

B(x,r)

φ(y)

exists almost everywhere in �. Therefore, any element φ ∈ W 1,p(�, Rm) has associated an ele-

ment φ̄ ∈ W
1,p

(�, Rm) in a canonical way. As it is customarily done, we identify φ with φ̄,

which transforms W 1,p(�, Rm) into a subspace of W
1,p

(�, Rm). This identification has several
nice properties, the most noticeable being that the space W 1,∞(�, Rm) identifies with the space
of Lipschitz functions from � to Rm and the weak ∗ convergence in W 1,∞(�, Rm) becomes the
uniform convergence. A function φ : � → Rm is Lipschitz if there is a positive constant C such
that for any x, y ∈ � we have

‖φ(x) − φ(y)‖ � C‖x − y‖.
Morrey’s quasiconvexity is a necessary and sufficient condition for the lower semicontinuity

of the functional

I : W 1,∞(�, Rm) → R, I (φ) =
∫

�
w(Dφ(x)).

Definition 5.1. Let w: Rn×m → R be a measurable function and � = (0, 1)n. The function w is
quasiconvex if for any F ∈ Rn×m and for any Lipschitz function u : � → Rm, such that u(x) = 0
on ��, we have the inequality:∫

�
w(F + Du(x)) �

∫
�

w(F).

By a translation and rescaling argument, in this definition � can be replaced by any open
bounded subset of Rn. If the function w is continuous, then in the particular cases n = 1 or
m = 1 quasiconvexity is equivalent with convexity of w [20]. In general quasiconvexity is a
somewhat mysterious notion, very difficult to establish. That is why Morrey proposed the notion of
polyconvexity, later used by Ball in several fundamental results in nonlinear elasticity. Polyconvex
functions are quasiconvex. Further we explain what polyconvex functions are.

For any natural number n > 0 a multi-index α is a string α = (i1, . . . , ik), 1 � i1 < · · · <

ik � n. The length of α is |α| = k.
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For given natural numbers m, n > 0, k � min{m, n} and for any multi-indices α = (i1, . . . , ik)

and β = (j1, . . . , jk) of length k, we denote by Mαβ the function which associates to any matrix
F ∈ Rn×m the minor

Mαβ(F ) = det(Fip,jq )p,q=1,...,k.

Moreover, we denote by M(F) the ordered collection of all minors of the matrix F , in a given
lexicographic order.

Definition 5.2. A continuous function w: Rn×m → R is polyconvex if it can be written as w(F) =
g(M(F)), with g convex function.

A necessary condition for quasiconvexity is rank one convexity. For matrices A, B, we denote
by [[A, B]] the line segment

[[A, B]] = {(1 − t)A + tB : t ∈ [0, 1]}.

Definition 5.3. The function w: Rn×m → R is rank one convex if for any A, B ∈ Rn×m such that
rank(A − B) = 1 the function t ∈ [0, 1] 
→ w((1 − t)A + tB) ∈ R is convex.

If the function w is C2 then rank one convexity can be expressed as an ellipticity condition,
see further (1).

Let us denote byRco,Qco,Pco, Conv the classes of rank one convex, quasiconvex, polyconvex
and convex functions, respectively. We then have

Conv ⊂ Pco ⊂ Qco ⊂ Rco.

Definition 5.4. To each notion of convexity corresponds a notion of convex hull:

– the rank one convex hull of a non-empty set A ⊂ Rn×m is

Rco(A) =
{
H ∈ Rn×m : w(H) � inf

F∈A
w, ∀w ∈ Rco

}
,

– the quasiconvex hull of a non-empty set A ⊂ Rn×m is

Qco(A) =
{
H ∈ Rn×m : w(H) � inf

F∈A
w, ∀w ∈ Qco

}
,

– the polyconvex hull of a non-empty set A ⊂ Rn×m is

Pco(A) =
{
H ∈ Rn×m : w(H) � inf

F∈A
w, ∀w ∈ Pco

}
,

– the convex hull of a non-empty set A ⊂ Rn×m is

Conv(A) =
{
H ∈ Rn×m : w(H) � inf

F∈A
w, ∀w ∈ Conv

}
.

We have the inclusions:

Rco(A) ⊂ Qco(A) ⊂ Pco(A) ⊂ Conv(A).

The particular case m = n is important in applications to the elasticity theory. In this case
functions φ ∈ W 1,p(�, Rn) represent displacements of the body with reference configuration
� ⊂ Rn and w : gl(n, R) → R is the potential of the elastic energy of the body.
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From the point of view of mechanics we should consider only displacements φ which are
inversible functions in some (weak or strong) sense. We shall not enter into details here, but
we shall consider only the particular case of W 1,∞ displacements, seen as Lipschitz functions,
as explained previously. In applications we should only look at displacements φ which are bi-
Lipschitz functions, that is functions φ: � ⊂ Rn → Rn such that there are constants C, C′ > 0
with the property that for any x, y ∈ �

C′‖x − y‖ � ‖φ(x) − φ(y)‖ � C‖x − y‖.
According to Rademacher theorem any Lipschitz function is derivable almost everywhere. We
concentrate on bi-Lipschitz displacementsφ : �⊂Rn →Rn such that almost everywhereDφ(x)∈
GL(n, R)+. In this case the elastic potential w becomes a function w : GL(n, R)+ → R. (Notice
that such displacements φ are only locally inversible; global inversibility conditions lead to very
difficult problems in the calculus of variations.)

In [5] we introduced the following notion of quasiconvexity.

Definition 5.5. Let w: GL(n, R)+ → R be a function and � = (0, 1)n. w is multiplicative quasi-
convex if for any F ∈ GL(n, R)+ and for any Lipschitz function u: � → R, such that for almost
any x ∈ � det Du(x) > 0 and u(x) = x on ��, we have the inequality:∫

�
w(FDu(x)) �

∫
�

w(F).

The notion of multiplicative quasiconvexity appears as Diff-quasiconvexity in Giaquinta et al.
[10, p. 174, Definition 3]. It can be found for the first time in Ball [3], in a disguised form. It is
in fact the natural notion to be considered in connection with continuous media mechanics. Any
polyconvex function is multiplicative quasiconvex.

6. Objective isotropic elastic potentials

In elasticity displacements are considered with respect to a reference frame. That is why
the elastic potential w: GL(n, R)+ → R should be frame-indifferent (or objective), which is
expressed as: for all F ∈ GL(n, R)+ and all Q ∈ SO(n) we have w(QF) = w(F). The potential
corresponds to an isotropic elastic material if for all F ∈ GL(n, R)+ and all Q ∈ SO(n) we have
w(FQ) = w(F).

If w is objective and isotropic then there is a symmetric function g: Rn+ → R such that w(F) =
g(σ (F )). If w is C2 so is g, see [2].

Definition 5.3 of rank one convexity for functions w: GL(n, R)+ → R has to be slightly
modified.

Definition 6.1. The functionw: GL(n, R)+ → R is rank one convex if for anyA, B ∈ GL(n, R)+
such that rank(A − B) = 1 and such that [[A, B]] ⊂ GL(n, R)+ the function t ∈ [0, 1] 
→ w((1 −
t)A + tB) ∈ R is convex.

If w is C2, then it is rank one convex if and only if it satisfies the ellipticity condition:
n∑

i,j,k,l=1

�2w

�Fij�Fkl

(F )aibj akbl � 0 (1)

for any F ∈ GL(n, R)+, a, b ∈ Rn.
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There is a certain interest in giving necessary and sufficient conditions for an objective isotropic
w to be rank one convex, especially in the cases n = 2 and n = 3. These conditions have been
expressed in copositivity terms in Simpson and Spector [17] forn = 3, Silhavy [16] and Dacorogna
[6] for arbitrary n (for an account on the history of results related to this problem, see [16] or [6]).

In this section, we shall obtain simpler necessary and sufficient conditions for rank one con-
vexity of isotropic functions. For this we need some preparations.

We shall introduce two auxiliary functions, h and l:

h : Rn → R, h(x) = g(exp x), (2)

l : Rn+ → R, l(x) = g(
√

x). (3)

The function h will be called “the diagonal of w”.

Definition 6.2. For any C2, symmetric function f : A ⊂ Rn → R, with A open, symmetric set,
we define the function Sch(f ): A → Sym(n, R) by

(a) for (i, j) any pair of indices, with i, j ∈ {1, . . . , n}, i /= j and any x ∈ A such that xi /= xj

we put

Schij (f )(x) = f,i(x) − f,j (x)

xi − xj

(b) for (i, j) any pair of indices, with i, j ∈ {1, . . . , n}, i /= j and any x ∈ A such that xi = xj

we put

Schij (f )(x) = f,ij (x) − f,jj (x)

(c) if i = j then we put Schii(f )(x) = 0 for any x ∈ A.

By Theorem 3.5(b) the function f is Schur-convex if and only if for any i, j ∈ {1, . . . , n} and
any x ∈ A we have Schij (f )(x) � 0. Remark also that the matrix function Sch(f ) is by definition
continuous, namely the expression of Sch(f ) from (b) in previous definition is obtained from
extension by continuity of the definition of Sch(f ) from the point (a).

In order to properly formulate the next result of Ball (here Theorem 6.5) we need one more
definition.

Definition 6.3. Let g: (0, +∞)n → R be any C2, symmetric function. For any pair of indices
(i, j) with i, j ∈ {1, . . . , n}, such that i /= j , and for any x ∈ (0, +∞)n with xi /= xj we define

Gij (x) = xig,i(x) − xjg,j (x)

x2
i − x2

j

,

H ij (x) = xjg,i(x) − xig,j (x)

x2
i − x2

j

.

For i = j and any x ∈ (0, +∞)n we shall put Hii(x) = Gii(x) = 0.

Lemma 6.4. Let g: (0, +∞)n → R be a C2, symmetric function, and h, l the associated functions
defined by relations (2) and (3). Then for any pair of indices (i, j) with i, j ∈ {1, . . . , n}, such
that i /= j, and for any x ∈ Rn with xi /= xj we have
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Gij (exp x)
exp(2xi) − exp(2xj )

xi − xj

= Schij (h)(x).

For any y ∈ (0, +∞)n with yi /= yj we have

Hij (y) = 2yiyjSchij (l)(x
2).

A direct consequence is that for any pair of indices (i, j) the functions Gij and Hij from
Definition 6.3 can be extended by continuity to all x ∈ (0, +∞)n.

Proof. By direct computation. �

The following is Theorem 6.4 of Ball [2], slightly reformulated.

Theorem 6.5. For x with all components different, the ellipticity condition (1) for the objective
isotropic function w can be expressed in terms of the associated function g as

n∑
i,j=1

gij aiaj bibj +
∑
i /=j

Gij a
2
i b

2
j +

∑
i /=j

H ij aiaj bibj � 0.

From Lemma 6.4, by continuity arguments it follows that one can write the ellipticity condition
for all x ∈ Rn+ as

n∑
i,j=1

Hijaiaj bibj +
n∑

i,j=1

Gija
2
i b

2
j � 0, (4)

where H is the matrix H = H + D2g.
The main result of this section is written further.

Theorem 6.6. Necessary and sufficient conditions for w ∈ C2 to be rank one convex are

(a) h is Schur-convex and
(b) for any x ∈ Rn we have

Hijxixj + Gij |xi‖xj | � 0. (5)

Remark 6.7. The condition (a) is equivalent with the Baker–Ericksen [1] set of inequalities

xig,i(xi, xj ) − xjg,j (xi, xj )

x2
i − x2

j

� 0

for all i /= j and x such that xi /= xj . Indeed, by Theorem 3.5(b), the function h is Schur-convex
if and only if

(h,i(xi, xj ) − h,j (xi, xj ))(xi − xj ) � 0

for all i /= j and xi /= xj . By Lemma 6.4 this is equivalent with Gij � 0. In [16], Silhavy expresses
Baker–Ericksen inequalities using multiplication instead of division, too.

Proof. We prove first the sufficiency. The hypothesis is that for all i, jGij � 0 and for all x ∈ Rn

the relation (5) holds. We claim that for any a, b ∈ Rn the inequality
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Gijaiaj bibj � Gija
2
i b

2
j

is true. The ellipticity condition follows then from (5) by the choice xi = aibi , for each i =
1, . . . , n. Indeed, we have the chain of inequalities

0 � Hijaibiaj bj + Gij |aibi‖ajbj | � Hijaibiaj bj + Gija
2
i b

2
j

In order to prove the claim note that Gij � 0 implies

−Gij (aj bi − aibj )
2 � 0.

A straightforward computation which uses the relations Gij = Gji gives

0 � −Gij (aj bi − aibj )
2 = 2Gij (aj bi − aibj )aibj .

The sufficiency part is therefore proven.
For the necessity part choose first in the ellipticity condition ai = δiI , bi = δiJ . For I /= J we

obtain GIJ � 0, which implies the Schur-convexity of h, as it is explained in remark (6.7). (For
I = J we obtain g,II � 0, which is interesting but with no use in this proof.)

Next, suppose that x, a ∈ (R∗)n and choose bi = xi/ai for each i = 1, . . . , n. The ellipticity
condition gives

∑
i,j

Hij xixj +
n∑

i,j=1

Gij

(
ai

aj

)2

x2
j � 0.

Take a2
i = |xi | and get (5), but only for x ∈ (R \ {0})n. The expression from the left of (5) makes

sense for any x. Evoking continuity with respect to x, the theorem is proved. �

The conditions given in Theorem 6.6 have some advantages compared with the ones available
in the literature. The relation between rank one convexity and Schur-convexity, which is rather
obvious, can be used to obtain lower semicontinuity results. As for the condition (b), it concentrates
in one inequality (containing absolute values) a family of 2n inequalities expressing copositivity.
Moreover, for n = 2 or n = 3, it can be used to obtain explicit conditions, as in Theorem 5,
Dacorogna [6].

At the end of this section we would like to discuss about nematic elastomers. For a mathematical
treatment of these materials, see, for example [9]. Such a material is incompressible, isotropic
and homogeneous. The elastic potential has the expression:

w(F) = σ1
↓(F )

a1
+ σ2

↓(F )

a2
+ σ1

↓(F )

a3

with a1 > a2 � a3 > 0. For the set of minimizers of the (quasiconvexification of the) associated
energy functional the microstructure phenomenon appears.

A quick computation directly gives the associated function p (see the notation introduced
before Theorem 3.5 in Section 3). It has the expression:

p(y1, y2, y3) = ey1

a1
+ ey2−y1

a2
+ ey3−y2

a3
.

The function p is defined over D′′ and it is not increasing in y1, y2; therefore, h is not Schur-
convex. By Theorem 6.6 the function w is not rank one convex, as expected. We think that the
fact that h is not Schur-convex explains the apparition of microstructure, which is seen in [9] as
an “SO(3) symmetry breaking”. Such a symmetry breaking appears also in linear algebra: the
Schur–Horn theorem states that the set
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{(A11, A22, A33): A = QDiag(a)QT, Q ∈ SO(3)}
is a convex polygon. This theorem is the linear version of the Horn–Thompson theorem. It is
conceivable then that a function h which is not Schur-convex favors deformations with singular
values vector located on the edges of a (well chosen) convex polygon, leading thus to “symmetry
breaking”.

This makes me ask if there is any isotropic function w, with Schur convex associated function
h, for which the microstructure phenomenon appears.

7. Majorization and calculus of variations

In this section, we shall use majorization techniques in order to obtain simpler proofs of known
results and to prove a new lower semicontinuity result which might have applications in elasticity.

We start with a short proof of a classical theorem:

Theorem 7.1. Leth: Rn → R be a symmetric, convex function.Thenw: Sym(n, R) → R, w(F ) =
h(λ(F )) is convex.

Proof. We use the first inequality of Fan from Theorem 4.5(a): for any A, B ∈ Sym(n, R) we
have

λ(A + B) ≺ (λ1
↓(A) + λ1

↓(B), . . . , λn
↓(A) + λn

↓(B)).

By hypothesis h is convex and symmetric, therefore, it is Schur-convex. From Fan majorization
relation we get: for any α, β ∈ [0, 1], α + β = 1

w(αA + βB) = h(λ(αA + βB)) � h(λ↓(αA) + λ↓(βB)).

The chain of inequalities continues by using first the convexity and then the symmetry of h:
h(λ↓(αA) + λ↓(βB)) = h(αλ↓(A) + βλ↓(B)) � αh(λ(A)) + βh(λ(B)). �

We quote next the following theorem of Thompson and Freede [19], Ball [3] (for a proof
coherent with this paper, see [13]). We shall give a very easy proof of this theorem using weak
majorization.

Theorem 7.2. Let g: [0, ∞)n → R be convex, symmetric and nondecreasing in each variable.
Define the function w by

w: gl(n, R) → R, w(F ) = g(σ (F )).

Then w is convex.

Proof. This time we use the second inequality of Fan from Theorem 4.5(b): for any A, B ∈
gl(n, R) we have

σ(A + B) ≺w σ(A) + σ(B).

If g is symmetric, convex and nondecreasing in each variable, then it is monotone with respect
to weak majorization. The proof resumes exactly as before. �

The main result of this section is

Theorem 7.3. Let g: (0, ∞)n → R be a continuous symmetric function and h: Rn → R, h =
g ◦ exp . Suppose that h is convex. Define w : gl(n, R) → R ∪{+∞} by
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w(F) =
{
g(σ (F )) if det F > 0,

+∞ otherwise.

Let F ∈ GL(n, R)+ and � ⊂ Rn be bounded, with piecewise smooth boundary. Let (φh)h ⊂
W 1,1(�, Rn) be any sequence of functions such that

(a) for any h we have φh − id ∈ W
1,1
0 (�, Rn) and∫

�
w(FDφh(x))dx < +∞.

(b) Let Dφh = RφhUφh = V φhRφh be the polar decomposition of Dφh. We shall suppose
that ln V φh converges weakly in L1(�, Mn×n

sym ) to 0.

Then we have

lim inf
h→∞

∫
�

w(FDφh(x)) � |�|w(F). (6)

For the lower semicontinuity properties of multiplicative quasiconvex functions, see [5, Theo-
rem 2.1]. It is proved there that if the potential w satisfies the inequality (6), but with respect to the
usual W 1,∞ weak ∗ convergence, then it induces a lower semicontinuous functional. In Theorem
7.3, we use a different convergence. It would be interesting to see if a lower semicontinuity
theorem similar with Theorem 2.1 [5] holds for this convergence.

It is to be remarked that ln V φ is Hencky’s logarithmic strain, a good measure of deformation
which has been considered several times in the elasticity literature.

In order to prepare the proof of Theorem 7.3, two lemmas are given.

Lemma 7.4. Let h : Rn → R be continuous, Schur-convex and g = h ◦ ln . Define

w: GL(n, R)+ → R, w(F ) = g(σ (F )),

w̃: GL(n, C) → R, w̃(F ) = g(|λ(F )|).
Then for any F

w(F) � w̃(F ).

Proof. This is a straightforward consequence of the Weyl inequality (Theorem 4.4)

ln |λ(F )| ≺ ln σ(F )

and of the Schur-convexity of h. �

Lemma 7.5. With the notations from Lemma 7.4, for any two symmetric matrices A, B, we have

w̃(exp A exp B) � w̃(exp(A + B)).

Proof. We have to check the conditions from Thompson [18], Lemma 6, which gives sufficient
conditions on the function w̃ in order to satisfy the inequality we are trying to prove. These
conditions are
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(1) for any X and any symmetric positive definite Y w̃(XY) = w̃(YX). This is obvious from
the definition of w̃;

(2) for any X and any m = 1, 2, . . .

w̃([XX∗]m) � w̃(X2m).

This follows from the definition of w̃ and Lemma 7.4. �

We give now the proof of Theorem 7.3.

Proof. It is not restrictive to suppose that |�| = 1. To any F ∈ GL(n, R)+ we associate its polar
decomposition F = RF UF = VF RF . For any function φ such that Dφ(x) ∈ GL(n, R)+ we shall
use the (similar) notation:

Dφ(x) = Rφ(x)Uφ(x) = V φ(x)Rφ(x).

With the notations from the theorem, we have from the isotropy of w hypothesis (a) and Theorem
3.4 that h is Schur-convex. From Lemmas 7.4 and 7.5 we obtain the chain of inequalities, for any
h: ∫

�
w(FDφh(x)) =

∫
�

w(UF V φh(x)) �
∫

�
w̃(UF V φh(x))

�
∫

�
w̃(exp(ln UF + ln V φh(x))). (7)

The proof continues using the definition of w and the Jensen inequality for convex h:∫
�

w̃(exp(ln UF + ln V φ(x))) =
∫

�
h(ln |λ(exp(ln UF + ln V φ(x)))|)

=
∫

�
h(λ(ln UF + ln V φ(x)))

� h

(∫
�

λ(ln UF + ln V φ(x))dx

)
. (8)

The proof ends by using the weak L1 convergence hypothesis (b), when we pass to the limit
h → ∞. �

The family of functions satisfying the hypothesis of Theorem 7.3 is very big.
As an example of a function satisfying the hypothesis of Theorem 7.3 take the polar decom-

position F = RF UF and define the function: w(F) = ln trace UF . Indeed, using the notations of
Theorem 7.3, by straightforward computation we find the associated function g: (0, +∞)n → R

as

g(y1, . . . , yn) = ln

(
n∑

i=1

yi

)
,

hence the function h(x) = g(exp x) has the expression:

h(x1, . . . , xn) = ln

(
n∑

i=1

exp(xi)

)
.

It is easy to check that h is convex and nondecreasing in each argument.
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Let us consider only the Schur-convexity and componentwise convexity hypothesis related to
w.

Proposition 7.6. Let h: Rn → R be Schur-convex and the function x ∈ R 
→ h(ln(x), . . . , ln(x))

be convex, continuous.Letφ: � → R be such that almost everywhere we haveDφ(x) ∈ GL(n, R)+∫
�

Dφ(x) = In

and the map x 
→ w(Dφ(x)) is integrable. Then∫
�

w(Dφ(x)) � |�|w(In).

Proof. Because h is Schur-convex and for almost any x ∈ �

1

n
ln det Dφ(x)(1, . . . , 1) ≺ ln σ(Dφ(x)),

we have the inequality

w(Dφ(x)) � w((det Dφ(x))1/nIn).

Use the convexity hypothesis to obtain the desired inequality. �

8. Rank one convex hulls and majorization

In this section, it is explained how majorization appears in the representation of some rank one
convex hulls.

We give further a proof of Theorem 1.2 using majorization. In this proof we use the fact that
majorization relation

x ≺≺ y if ln x ≺ ln y

is defined using polyconvex maps. The isotropy of the set E(a) from Theorem 1.2 implies that
the description of its rank one convex hull reduces to the description of the set of matrices
B ≺ Diag(a), where ≺ is Thompson’s order relation. These facts explain the resemblance between
Theorems 1.1 and 1.2.

Let a ∈ (0, ∞)n. Denote by E(a) the set of matrices F with positive determinant such that
σ(F ) = Pa for some P ∈ Sn. We have to prove the equality of sets

PcoE(a) = RcoE(a) = K(a),

where

K(a) = {B ∈ GL(n, R)+ : B ≺ Diag(a)}.
The set K(a) is polyconvex, being an intersection of preimages of (−∞, 0] by polyconvex
functions. Therefore

RcoE(a) ⊂ PcoE(a) ⊂ K(a).

It is left to prove that K(a) ⊂ RcoE(a). For this remark E(a) can be written as

E(a) = {R(P · Diag(a))Q : R, Q ∈ SO(n), P ∈ Sn}.
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Consider the convex cone of functions (Rco denotes the class of rank one convex functions)

Rco(a) = {φ ∈ Rco: ∀A ∈ E(a)φ(A) = 0}.
This cone is closed with respect to sup operation. Moreover, it has the same symmetries as E(a).
Indeed for any R, Q ∈ SO(n), any P ∈ Sn and any φ: GL(n, R)+ define (R, Q, P ) · φ to be the
function

F ∈ GL(n, R)+ 
→ (R, Q, P ) · φ(F ) = φ(R(P · F)Q).

If φ ∈ Rco(a), then (R, Q, P ) · φ ∈ Rco(a).
For any φ ∈ Rco(a), let φ̄ be the objective isotropic function

φ̄(F ) = sup{(R, Q, P ) · φ(F ): R, Q ∈ SO(n), P ∈ Sn}.
If φ ∈ Rco(a), then φ̄ ∈ Rco(a), by the previous remark about symmetries of Rco(a).

Objective isotropic rank one convex functions have Schur-convex diagonal, as a consequence
of Theorem 6.6(a) (if the rank one convex w is not C2 use a convolution argument). Therefore,
F ∈ K(a) and φ ∈ Rco(a) imply

φ(F ) � φ̄(F ) � φ̄(Diag(a)) = 0.

This proves the inclusion K(a) ⊂ Rco(a).
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