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Abstract

We present chemlambda (or the chemical concrete machine),
an artificial chemistry with the following properties: (a) is
Turing complete, (b) has a model of decentralized, distributed
computing associated to it, (c) works at the level of individ-
ual (artificial) molecules, subject of reversible, but otherwise
deterministic interactions with a small number of enzymes,
(d) encodes information in the geometrical structure of the
molecules and not in their numbers, (e) all interactions are
purely local in space and time. This is part of a larger project
to create computing, artificial chemistry and artificial life in
a distributed context, using topological and graphical lan-
guages.

Introduction
In this note we want to briefly present chemlambda (or the
chemical concrete machine), an artificial chemistry with the
following properties: (a) is Turing complete, (b) has a model
of decentralized, distributed computing associated to it (Bu-
liga and Kauffman, 2013), (c) works at the level of individ-
ual (artificial) molecules, subject of reversible, but otherwise
deterministic interactions with a small number of enzymes,
(d) encodes information in the geometrical structure of the
molecules and not in their numbers, (e) all interactions are
purely local in space and time.

In some respects chemlambda is closed to the fraglets
(Tschudin, 2003) and metabolic approaches (Tschudin and
Yamamoto, 2004) research line. In others, it resembles to the
CHAM (”chemical abstract machine”) (Berry and Boudol,
1992), which uses a chemical metaphor for modeling asyn-
chronous concurrent computations (in particular a concur-
rent lambda calculus). Algorithmic Chemistry (Fontana and
Buss, 1996) (Fontana and Buss, 1994a) (Fontana and Buss,
1994b) is another classical line of inspiration. Because it
concentrates at the level of individual molecules, it departs
however from the programming model of computation in-
troduced in (Banâtre and Le Métayer, 1986) (Banâtre et al.,
1988).

Chemlambda appeared as an artificial chemistry version
of a graph rewrite system, called graphic lambda calculus
(GLC) (Buliga, 2013b) (web tutorial). In GLC programs are

certain trivalent graphs, and execution of programs means
the application of graph rewrites, called ”moves”, on the re-
spective graph.

In the GLC formalism there is one global move
(GLOBAL FAN-OUT), all the other moves are local (i.e.
they involve a fixed, small number of nodes).

Chemlambda was introduced in order to eliminate this un-
pleasant GLOBAL FAN-OUT. Chemlambda uses only local
moves (Buliga, 2013a) (web tutorial). The moves of chem-
lambda act on trivalent graphs called ”molecules” at certain
”reaction sites”, like chemical reactions involving molecules
and enzymes (here enzyme=move).

Later on, a distributed, decentralized model of computa-
tion appeared, called distributed GLC (Buliga and Kauff-
man, 2013), which is based on chemlambda and GLC, also
using the Actor Model by Hewitt (Hewitt, 2010) (Agha,
1986). The Actor Model ingredient is a replacement of prox-
imity relations between (individual) interacting molecules.
Indeed, real chemical interactions happen only between
molecules which are close one to another. But in the chem-
lambda formalism there is no space where these artificial
molecules float, they are just certain trivalent graphs, not
embedded in any way in a space. Computation with chem-
lambda molecules is seen as asynchronous, purely local and
decentralized application of graph rewrites (i.e. moves, or
interaction with enzymes). Proximity relations are then re-
placed by interactions between actors, each actor being in
charge of a molecule, and having a very limited repertoire of
behaviours. (In turn, each behaviour uses one of the graph
rewrites available, either applied between two interacting ac-
tors, or internally, as it is the case of the sequences of moves
which effect a self-multiplication replacing the GLOBAL
FAN-OUT of GLC).

The key merit of this model is a graphical reformulation
of the well-known lambda calculus, central to logic and to
the design of recursion in computer languages. By refor-
mulating the lambda calculus in terms of graphs, the oper-
ations for the calculus become essentially local operations
of graphical replacement. The graphs themselves contain
all the data that is usually formulated in terms of algebra.
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4 (Graphical Lambda Calculus and Knots)
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a={b}
b={a}

Mutuality is diagrammed as topological linking. This leads the
question beyond flatland: Is there a topological interpretation for this
way of looking at set-membership?

Consider the following example, modified from the previous one.

b
a

a = {}
b = {a,a}

b

a
a={}
b={}

topological
equivalence

The link consisting of a  and b  in this example is not topologically
linked. The two components slide over one another and come apart.
The set a remains empty, but the set b changes from b = {a,a} to
empty. This example suggests the following interpretation.

This talk is not quite about knots, but 
this slide gives a hint that knots and    

fixed points are linked with one another.

And why Topology and Recursion are Intertwined.
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Duplicating Gremlin Meets Itself



This means that the global structure of the graph contains
all the information that is usually cut up into bits of alge-
bra. The graph becomes a whole system that instantiates the
computational power of the calculus. This instantiation is
the key reason why this model can propose significant de-
signs in distributed computing. The graph as a whole can
exist in a widely distributed fashion, while the interactions
that constitute its computations are controlled by local nodal
exchanges between actors.

Furthermore, this property of redesigning the relationship
of the local and the global is not restricted just to lambda cal-
culus networks. There are relationships of the same kind that
link this research with topology (knots and lambda calcu-
lus (Kauffman, 1994b), knot automata (Kauffman, 1994a)),
or with topological quantum computing (Chen et al., 2007),
(Kauffman and Lomonaco Jr., 2006).

A quick review of lambda calculus
In this section we give a very quick review of the formalism
and ideas of lambda calculus. First of all the notation

F = �xy.f(x, y)

indicates a function f(x, y) of two variables, defined in
some domain and a stipulation (the part after � and before
the function) of the order of application of the operator F to
these variables. Thus we can write

(Fx)y = f(x, y).

For example, If
F = �xy.y(yx),

then
(Fa)b = b(ba).

Later we will make a notation for the operation of evaluat-
ing such an operator, but for now we just consider the non-
associative algebra structure of such operators. We can work
in reverse as well. Suppose I say that G is an operator de-
fined by the equation

((Gx)y)z = (yx)(yz).

Then we have in the � notation,

G = �xyz.(yx)(yz).

For this analysis, let us suppose that the algebra generated
by the variables x, y, z, · · · is a universal non-associative
algebra. This means that the binary operation is non-
associative and there are no further relations instantiated.
However, if we define M by Mx = xx and regard M as
an element of an extension of the original algebra by giving
it the status of M = �x.xx, then M satisfies the special
relation that defines it and furthermore we would like to be
able to say that the definition of the action of M applies

even if we apply M to itself. In that case we would have
MM = M as a consequence of the definition M = �x.xx.
Thus we can start with a universal non-associative algebra
and then add new elements that satisfy special relations. We
can in this freely made situation allow the new elements to
act (compose) upon themselves.

Here is a useful example. Let F be a given operator. It
can be one of the original variables, or it can be a defined
operator such as we have discussed above. The we define G
as

Gx = F (xx).

That is, we define

G = �x.F (xx).

Now we note that

GG = F (GG).

Thus any F in our algebra has a fixed point that is another
element of the algebra. This is the Fixed Point Theorem
of Church and Curry. Along with this fixed point theorem
comes some caution in the use and construction of such
lambda calculi. For suppose we had been dealing with a
logical calculus and F =⇥, the negation operator. Then in
our initial calculus we may have assumed that negation does
not have a fixed point, as in classical logic. But we have seen
that if

G = �x. ⇥ (xx),

then
GG =⇥ (GG).

Thus the extended algebra can not be expected to continue
to obey classical logical rules. If it is desired to continue
to obey such rules then one must put some controls on the
lambda calculus. Also, if one has a fixed point as in

GG = F (GG),

then there is the possibility of an infinite recursion of the
form

GG = F (GG) = F (F (GG)) = F (F (F (GG))) =

= F (F (F (F (GG)))) = F (F (F (F (F (GG))))) = · · · .

It is good to have a formalism for recursion, but the language
needs to include controls for that so that a computation does
not run without stopping.

One way to handle such control is to replace equality of
evaluation by an evaluation or reduction step. Then one
would have

(�x.H(x))a �⇤ H(a)
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Lambda Notation

(note the non-associativity)
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evaluation by an evaluation or reduction step. Then one
would have

(�x.H(x))a �⇤ H(a)

This means that the global structure of the graph contains
all the information that is usually cut up into bits of alge-
bra. The graph becomes a whole system that instantiates the
computational power of the calculus. This instantiation is
the key reason why this model can propose significant de-
signs in distributed computing. The graph as a whole can
exist in a widely distributed fashion, while the interactions
that constitute its computations are controlled by local nodal
exchanges between actors.

Furthermore, this property of redesigning the relationship
of the local and the global is not restricted just to lambda cal-
culus networks. There are relationships of the same kind that
link this research with topology (knots and lambda calcu-
lus (Kauffman, 1994b), knot automata (Kauffman, 1994a)),
or with topological quantum computing (Chen et al., 2007),
(Kauffman and Lomonaco Jr., 2006).

A quick review of lambda calculus
In this section we give a very quick review of the formalism
and ideas of lambda calculus. First of all the notation

F = �xy.f(x, y)

indicates a function f(x, y) of two variables, defined in
some domain and a stipulation (the part after � and before
the function) of the order of application of the operator F to
these variables. Thus we can write

(Fx)y = f(x, y).

For example, If
F = �xy.y(yx),

then
(Fa)b = b(ba).

Later we will make a notation for the operation of evaluat-
ing such an operator, but for now we just consider the non-
associative algebra structure of such operators. We can work
in reverse as well. Suppose I say that G is an operator de-
fined by the equation

((Gx)y)z = (yx)(yz).

Then we have in the � notation,

G = �xyz.(yx)(yz).

For this analysis, let us suppose that the algebra generated
by the variables x, y, z, · · · is a universal non-associative
algebra. This means that the binary operation is non-
associative and there are no further relations instantiated.
However, if we define M by Mx = xx and regard M as
an element of an extension of the original algebra by giving
it the status of M = �x.xx, then M satisfies the special
relation that defines it and furthermore we would like to be
able to say that the definition of the action of M applies

even if we apply M to itself. In that case we would have
MM = M as a consequence of the definition M = �x.xx.
Thus we can start with a universal non-associative algebra
and then add new elements that satisfy special relations. We
can in this freely made situation allow the new elements to
act (compose) upon themselves.

Here is a useful example. Let F be a given operator. It
can be one of the original variables, or it can be a defined
operator such as we have discussed above. The we define G
as

Gx = F (xx).

That is, we define

G = �x.F (xx).

Now we note that

GG = F (GG).

Thus any F in our algebra has a fixed point that is another
element of the algebra. This is the Fixed Point Theorem
of Church and Curry. Along with this fixed point theorem
comes some caution in the use and construction of such
lambda calculi. For suppose we had been dealing with a
logical calculus and F =⇥, the negation operator. Then in
our initial calculus we may have assumed that negation does
not have a fixed point, as in classical logic. But we have seen
that if

G = �x. ⇥ (xx),

then
GG =⇥ (GG).

Thus the extended algebra can not be expected to continue
to obey classical logical rules. If it is desired to continue
to obey such rules then one must put some controls on the
lambda calculus. Also, if one has a fixed point as in

GG = F (GG),

then there is the possibility of an infinite recursion of the
form
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Church-Curry Fixed Point Theorem and Recursion

And Its Dangers

Any F has a fixed point!

This is the Lambda version of the Russell Paradox.
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For Lambda Calculus one resolves the paradox by 
replacing equality by a reductive move.
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              -----> F(F(F(GG)))

Whence Recursion.
      And recursion must  be  

controlled.





Knot-Logical Diagrammatic Lambda Calculus

Figure 23: Knot Diagrammatic Multiplication
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Figure 24: Relations and Diagrams with Loops

In Figure 25 we illustrate the basic fixed point combinator

G = �x.F (xx)�x.F (xx)

in (knot diagrammatic) topological graphical lambda calculus (TGLC). the two self-multiplications
that occur at two levels in this expression are instantiated by the two curls in the graph.
We have that F (G) is the beta-reduction of G and thus G corresponds to the fixed point
G = F (G). It is important to note that equality in fixed points is translated into beta-
reducibility in the graphical lambda calculus. It is in this way that we can control in a
computational system the otherwise infinite loops that could occur if one treated beta re-
duction as equality. In abstract algebra the situation is di�erent and one can consider fixed
point identities and their consequence for an algebra with generators and relations. The
fact that the fixed point combinators can occur both at algebraic and computational levels
in the TGLC makes this a rich subject for investigation.

Similarly, in Figure 26 we illustrate a TGLC expression for the Y -combinator. Note how
the structure of this combinator takes on the hybrid nature of tangle diagram infused with
curls and lambda nodes. The encircled crossing is a virtual crossing, a crossing of graphical
lines that does not a�ect them in any way. It is natural to use such a vertex in graph theory
and in fact there is an extension of knot theory [28, 29] that allows exactly such virtual
crossings in the knot diagrams. Thus TGLC can be viewed as a computational extension
of virtual knot theory.

Finally, we examine relations of topological graphical lambda calculus with topological
quantum computing. We point out that a quantum computer is modeled by a graphical
network that embodies the mechanism of unitary transformations on a complex vector space
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algebra with topological relations.

We are exploring extensions 
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the addition of diagrammatic 

lambda calculus.



Figure 24: Relations and Diagrams with Loops

In Figure 25 we illustrate the basic fixed point combinator

G = �x.F (xx)�x.F (xx)

in (knot diagrammatic) topological graphical lambda calculus (TGLC). the two self-multiplications
that occur at two levels in this expression are instantiated by the two curls in the graph.
We have that F (G) is the beta-reduction of G and thus G corresponds to the fixed point
G = F (G). It is important to note that equality in fixed points is translated into beta-
reducibility in the graphical lambda calculus. It is in this way that we can control in a
computational system the otherwise infinite loops that could occur if one treated beta re-
duction as equality. In abstract algebra the situation is di�erent and one can consider fixed
point identities and their consequence for an algebra with generators and relations. The
fact that the fixed point combinators can occur both at algebraic and computational levels
in the TGLC makes this a rich subject for investigation.

Similarly, in Figure 26 we illustrate a TGLC expression for the Y -combinator. Note how
the structure of this combinator takes on the hybrid nature of tangle diagram infused with
curls and lambda nodes. The encircled crossing is a virtual crossing, a crossing of graphical
lines that does not a�ect them in any way. It is natural to use such a vertex in graph theory
and in fact there is an extension of knot theory [28, 29] that allows exactly such virtual
crossings in the knot diagrams. Thus TGLC can be viewed as a computational extension
of virtual knot theory.

Finally, we examine relations of topological graphical lambda calculus with topological
quantum computing. We point out that a quantum computer is modeled by a graphical
network that embodies the mechanism of unitary transformations on a complex vector space

19

Lets use this glyph for  
a 

acting on itself.



A A

[Lx.F(x)]A -------->  F(A)

In the graphical representation, THERE 
IS NO VARIABLE X.

lambda

multiply



multiply

Lambda

This is our general graphical 
representation with a multiplication 

node, a lambda node and an F.



We aim to do lambda calculus and computational 
generalizations of it by purely graphical, local moves on 

graphs. 

The algebra disappears. 

There are no inputs or outputs. 

Everything is done by changing local graphical 
configurations. The actions can happen in a widely 

distributed network of nodes.



!

F

G =!!x.F(xx) !x.F(xx)

G ------> F(G) by Beta reduction.

Basic Fixed Point 
Combinator
In Topological 
Graphical Lambda
Calculus.!

F

!

F

F

!

F

!

F

F

=

Duplicate

Beta

Fixed Point Combinator.
Note the adoption of a 
duplication operation.
In some cases this can 

be managed by 
local operations 

(as in DNA).



Figure 25: Topological Fixed Point Combinator

Figure 26: Topological Y - Combinator
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Graphic Lambda Calculus

The motivation for constructing GLC was the need to have a visual representation of
certain finite di⇥erential computations in spaces with dilations [10] [11] [12][14] [13].
This is possible in another sector of GLC, called the ”emergent algebra sector” and
it is completely out of reach of WL. Another sector is particularly interesting: is the
sector containing knot and tangle diagrams, which allows GLC to interact with Kau⇥-
man Knot Logic [25] and Knot Automata [26]. Thus GLC is a formalism which can be
used for lambda calculus but also for other types of nonstandard computing models,
like Kau⇥man’s Knot Logic.

5. a big deal of e⇥ort in the WL approach consists in finding ways to select those ”valid”
lambda graphs, i.e. graphs which correspond to lambda calculus terms. In GLC, on
the contrary, all the moves, including the (correspondent of the) beta reduction move,
apply on any graph, from any sector.

GLC uses a set GRAPH of oriented, locally planar trivalent graphs which are constructed
from the following elementary nodes: (a) the � abstraction node, (b) the fan-out node, (c)
the application node, (d) the dilation node, decorated with ⇥ � �, a commutative group of
scales. To this nodes are added (e) arrows, loops and a termination node with one incoming
arrow and no output arrow.

Figure 1: Basic pieces of GLC graphs

Graphic lambda calculus has several interesting sectors (i.e. subsets of GRAPH with
particular choices of moves) which are equivalent with: (a) untyped lambda calculus, com-
binatory logic (b) knot and tangle diagrams with Reidemeister moves (c) finite di⇥erence
calculus in spaces with dilations. In the figure 2 are represented graphs from the first two
sectors: (a) the combinator K, (b) an oriented crossing.

Figure 2: (a) the K combinator, (b) encoding of a crossing in GLC

The moves of GLC come in two categories: local (with an upper bound on the number
of nodes and arrows involved) and global (otherwise).
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Figure 3: Local moves of GLC

The list of all local moves of GLC is given in the figure 3. The most important move
(graph rewrite) is the graphic beta move, which appears in the upper left part of the figure
3. It is the graphic version of beta reduction from lambda calculus. This is a local move, i.e.
it a�ects only a local region of a graph. The graphic beta move is a purely oriented graph
rewrite (move) version of the Wadsworth [34] or Lamping [30] beta reduction move.

There is no restriction though to apply this move only to lambda graphs (i.e. graphs
which represent lambda calculus terms). In the figure 4 are three examples of application
of the graphic beta move; only the first example corresponds to a beta reduction in lambda
calculus:

Figure 4: Examples of applications of the graphic beta move

To better understand the di�erence between local and global moves, look at the figure
5, which describes (a) the local CO-COMM move and (b) the GLOBAL FAN-OUT move.
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Figure 5: (a) the CO-COMM move is local, (b) the GLOBAL FAN-OUT move is global

As concerns the computational power of graphic lambda calculus, because it contains
lambda calculus it follows that it is Turing universal, but this is achieved by using one global
move, the GLOBAL FAN-OUT. The big advantage of graphic lambda calculus is that it
does not need or use names for variables or (lambda calculus) terms, therefore it does not
need alpha reduction, nor strategies of computing based on evaluations of terms.

3 Chemical concrete machine

The chemical concrete machine [9] is a modification of graphic lambda calculus which uses
moreover the following chemical metaphor: graphs (in particular lambda calculus terms) are
molecules and moves are chemical reactions which occur in the presence of certain enzymes
(i.e. moves are enzymes).

A short description of the chemical concrete machine is the following. As in the graphic
lambda calculus, we use a collection of trivalent, locally planar graphs, which we call
”molecules”. Thus we have a set MOLECULES instead of the set GRAPH, which are
build from the following elementary nodes (atoms?): (a) the � abstraction node, (b) the
fan-out node, (c) the application node, (d) the fan-in node. To these nodes we add, as pre-
viously, (e) arrows, loops and a termination node with one incoming arrow and no output
arrow.

Figure 6: Basic pieces of chemlambda molecules

A distinction from graphic lambda calculus is that we admit also a set of nodes with
unspecified valences, called ”other molecules”. These are the equivalent of ”cores” from the
section 4, paragraph 5. Interaction with the outer space, i.e. they can be used as interfaces
with external constructs.

Even if we have a one-to-one correspondence between elementary nodes of MOLECULES
and those of GRAPH, there are di�erences between the moves of the chemical concrete ma-
chine and the moves of graphic lambda calculus. See the paper [9] for a detailed description
of the formalism.
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where the arrow refers to a reduction step that can be per-
formed. In this case, the step is called beta - reduction. In
the rest of this paper, we show how to adapt such controlled
lambda calculi to operations on graphs where steps of re-
placement from one graph to another correspond to opera-
tions like beta-reduction. The graphs, once they are formu-
lated, have the advantage that the details of labeling in the
algebra have disappeared into graphical connections and so
certain complexities of lambda calculi are handled automat-
ically. We envisage such graphical systems and their evolu-
tions under computational steps such as beta-reduction as a
new and powerful formulation of computation and informa-
tion processing.

The Chemlambda formalism
Chemlambda is a graph rewriting system. It consists in
a family of graphs, called ”molecules” and a list of graph
rewrites, called ”moves”. Every move is local, in the sense
that there is an a priori upper bound on the number of nodes
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- the local pruning moves, Fig. 5, are useful in both senses,
either as moves which destroy the ”dead” arrows and
nodes, or as moves which enrich the molecule by creat-
ing new arrows or nodes.

Figure 5: the local pruning moves

Chemlambda and lambda calculus
Lambda calculus combinators can be encoded as chem-
lambda molecules. In (Buliga, 2013a) Theorem 4.2 is given
the encoding of the BCKW system of combinators from
Fig. 6. The proof of the theorem has two parts: (a) the re-
duction relations of the BCKW system can be done in chem-
lambda, (b) the B,C,K,W combinator molecules can repro-
duce, or self-multiply. The conclusion of the theorem is that
chemlambda is Turing universal.

We think it is interesting to explain in detail what this self-
multiplication means in the chemlambda formalism.

Remark, after inspection of the Fig. 6, that every combi-
nator molecules has one arrow which points outwards from
the molecule, let’s call this arrow the ”exit arrow”. Recall
that we have a fanout node among the basic pieces of chem-
lambda molecules. In order to prove the Turing universality,
we need to be able to transform, by a sequence of chem-
lambda moves, one combinator molecule with the exit arrow
connected to the in arrow of a fanout node, into two copies
of the combinator molecule. We call this self-multiplication.
(In the GLC formalism this self-multiplication is done via
the move GLOBAL FAN-OUT, but chemlambda has only
local moves.)

As an example, in the Fig. 7 we see how the K combina-
tor molecule self-reproduces, after a string of chemlambda
moves.

Figure 6: B,C,K,W combinators encoded in chemlambda

Figure 7: Self-reproduction of the K combinator molecule

Propagators, distributors, multipliers and
guns

The self-multiplication of combinator molecules is done by
a sequence of local moves of chemlambda. The sequence
of moves depends on the combinator molecule. We have
seen that self-multiplication is an important ingredient for
proving Turing universality of chemlambda.

Many chemlambda molecules don’t encode combinators
or lambda calculus terms, moreover, moves like DIST or
FAN-IN don’t have a clear meaning as seen from the point
of view of lambda calculus. The phenomenon of self-
multiplication is not restricted to combinator molecules.

Let us then explore a bit the chemlambda formalism from
the point of view of phenomena like self-multiplication,
without caring about lambda calculus.

In the Fig. 8 are defined multipliers, propagators and dis-
tributor molecules. A chemlambda molecule with an exit
arrow A � is a multiplier if there is a sequence of chem-
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34 The power of λ and CL

term whose only atoms are the basic combinators I, K, S. In λ, the
following combinators are given special names:

B ≡ λxyz.x(yz), B′ ≡ λxyz.y(xz), C ≡ λxyz.xzy,
I ≡ λx.x, K ≡ λxy.x, S ≡ λxyz.xz(yz),
W ≡ λxy.xyy.

3B The fixed-point theorem

A fixed point of an operator or function is an object which does not
change when the operator is applied to it. For example, the operation of
squaring numbers has two fixed points 0 and 1, since 02 = 0 and 12 = 1;
and the successor-function has none, since n + 1 ̸= n for all n.

The next theorem shows that every operator in λ and CL has a fixed
point. More precisely, for every term X there is a term P (depending
on X) such that

XP =β ,w P.

Furthermore, there is a combinator Y which finds these fixed points, i.e.
such that, for every term X, the term YX is a fixed point of X.

Theorem 3.3 (Fixed-point theorem) In both λ and CL, there is a
combinator Y such that

(a) Yx =β ,w x(Yx).

In fact, there is a Y with the stronger property

(b) Yx ◃β ,w x(Yx).

Proof A suitable Y was invented by Alan Turing in 1937. It is

Y ≡ UU, where U ≡ λux.x(uux).

It satisfies (b) (and therefore also (a)), because

Yx≡ (λu.(λx.x(uux)))Ux by the definition of U

◃β ,w [U/u]
(
λx.x(uux)

)
x by Definition 1.24 or Theorem 2.21

≡ (λx.x(UUx))x by Definition 1.12 or Lemma 2.28(c)
(noting that FV(U) is empty)

◃β ,w x(UUx) by Definition 1.24 or Theorem 2.21
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lambda moves, denoted by MULTA, which produces the
self-multiplication of the molecule. For example, any com-
binator molecule is a multiplier, but there are other multipli-
ers as well.

A chemlambda molecule � A � with distinguished in
and out arrows is a propagator if there is a sequence of
chemlambda moves, denoted by PROPA, with the effect
described in the second row of Fig. 8. The molecule is called
a propagator because it looks like it propagates through the
fanout nodes.

There are two kinds of distributor molecules, described
in the 3rd and 4th rows of Fig. 8. Compare with the DIST
moves from Fig.3, which can be interpreted by saying that
the application node is a distributor of the first kind and the
lambda abstraction node is a distributor of the second kind.

Figure 8: Definition of self-multipliers, propagators, distrib-
utors

Starting from the mentioned multipliers and distributors,
we can make many other interesting molecules. For exam-
ple, we can make a propagator from a multiplier A and a
distributor of the first kind B, as described in Fig. 9.

Figure 9: Propagator made from a multiplier and a distribu-
tor of the first kind

In Fig 10 is described a multiplier made from a distributor

of the second kind.

Figure 10: Multiplier made from a distributor of the second
kind

We can as well make guns, which shoot an endless string
of molecules, like in the Fig. 11. On the first row is described
a gun made from a propagator molecule and a fanout node.
On the second row is described a gun made from a distribu-
tor of the first kind and a fanout node.

Figure 11: Examples of guns

See also (Buliga, 2013a) Section 3 for other examples
of interesting chemlambda molecules, like zippers, sets and
pairs.

All these constructions show that we can use chemlambda
for building all sorts of synchronous or asynchronous au-
tomata (which are not living on a predefined lattice, instead
they grow their own lattice). Also, we proved the potential
of chemlambda to evolve complex molecules from simple
ones.

The Y combinator and self-multiplication
In this section we come back to lambda calculus, in order to
explain the behaviour of the Y combinator molecule. From
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they grow their own lattice). Also, we proved the potential
of chemlambda to evolve complex molecules from simple
ones.

The Y combinator and self-multiplication
In this section we come back to lambda calculus, in order to
explain the behaviour of the Y combinator molecule. From
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the previous sections we learned that self-multiplication is a
basic ingredient for encoding the BCKW system of combi-
nators in chemlambda. The moves applied to a combinator
molecule represent the reduction of the combinator. Self-
multiplication is needed in order to produce copies of a part
of the combinator molecule, with the purpose of further re-
ducing one of the copies, while having at our disposal the
other copy for further needs.

Seen like this, it seems that self-multiplication is also a
basic ingredient for recursion. In lambda calculus there is
the iconic Y combinator which represents the essence of re-
cursion. In the following we shall see that, however, self-
multiplication is not directly needed in the reduction of the
Y combinator.

Figure 12: the Y A combinator molecule and a first beta
move

Figure 13: second beta move applied to the Y A molecule

Figure 14: next step of reduction, two DIST moves

The Y combinator has the expression

Y = �y.(�x.y(xx))(�x.y(xx))

and it has the following property: for any lambda term A
the expression Y A reduces to A(Y A). In particular, if A is
another combinator, then Y A is a fixed-point combinator for
A.

In lambda calculus the string of reductions is the follow-
ing sequence of beta moves:

Y A � (�x.A(xx))(�x.A(xx)) �

� A((�x.A(xx))(�x.A(xx))) = A(Y A)

We see that the during the reduction process we needed a
multiplication of the combinator A.

Let us pass to the chemlambda encoding of the Y combi-
nator. With A another combinator molecule, the combinator
molecule which encodes Y A is the one from the left hand
side of the Fig. 12.

After the application of a beta move, it transforms into the
molecule from the right hand side of Fig. 12. Continuing
from the Fig. 12, there is a second beta move which can be
applied, as in Fig. 13.

There are two DIST moves, one of the first kind, the other
of the second kind, which are applied, as in Fig. 14.

Let’s see how we can reduce further this molecule, until
we obtain one which corresponds to A(Y A). We shall use
the fact that a certain molecule, called the bit is a propaga-
tor, as proved in Fig. 15. The bit molecule corresponds to
the expression (xx) which appears repeatedly in the Y com-
binator.

Figure 15: the bit is a propagator

We continue from the Fig. 14 and we apply the PROP
move of the bit and then a FAN-IN move, as in the Fig. 16.

The last molecule corresponds to A(Y A), if we interpret
the fanout nodes as real fan-out gates.

Surprisingly, during the reduction there was no need to
use the fact that the combinator molecule A is a multi-
plier! This shows that the Y combinator molecule can be
used as a fixed point combinator with any other chemlambda
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Figure 16: last two moves of the reduction of Y A to A(Y A)

molecule. That is because the Y combinator molecule is a
gun which shoots fanout nodes, Fig. 17.

Figure 17: the Y molecule is a gun

A topological version of chemlambda
In (Buliga and Kauffman, 2013) Section 5 is proposed a
topological version of GLC, called TGLC. We can do the
same with chemlambda. The idea is that we may imag-
ine formalisms which are equivalent with GLC and chem-
lambda, even if visually they seem different.

Figure 18: Topological Fixed Point Combinator

For a topological version of chemlambda we may use
some of the basic nodes of chemlambda together with knot
diagrams crossings. In Fig. 19 we give two possible transla-
tions of crossings into chemlambda: (a) as a pair of a fanout
and application node, corresponding to the proposal made
in (Buliga and Kauffman, 2013) Section 5, or (b) as a pair

of a lambda abstraction node and an application node, as
proposed in (Buliga, 2013b) Section 6. A crossing is a 4
valent vertex. Virtual crossings, i.e. encircled crossings of
graphical lines, may be used for making our graphs globally
planars instead of only locally planar, as previously.

Figure 19: first row, two possible translations from crossings
to chemlambda, second row a virtual crossing

If we stick to the choice (a) then we obtain a topological
version of chemlambda, that has the form of knot diagrams
equipped with extra lambda nodes and multiplication nodes.

In Fig. 18 we illustrate the basic fixed point combinator

G = �x.F (xx)�x.F (xx)

In this knot diagrammatic convention, the two self-
multiplications that occur at two levels in this expression are
instantiated by the two curls in the graph.

Similarly, in Fig. 20 we illustrate a topological expression
for the Y -combinator.

Figure 20: Topological Y - Combinator

Note how the structure of this combinator takes on the hy-
brid nature of tangle diagram infused with curls and lambda
nodes. It is natural to use virtual crossings in graph theory
and in fact there is an extension of knot theory that allows
exactly such virtual crossings in the knot diagrams.

In Fig. 21 we see that, via a CO-COMM move, a curl is a
bit, the molecule which appears in Fig 15.

The fact that alpha reduction is not needed in chemlambda
due to the absence of variables and the presence of direct
connections that effect interactions is part of a link of this
formalism with the formalisms at the knot theoretic and
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We continue from the Fig. 14 and we apply the PROP
move of the bit and then a FAN-IN move, as in the Fig. 16.

The last molecule corresponds to A(Y A), if we interpret
the fanout nodes as real fan-out gates.

Surprisingly, during the reduction there was no need to
use the fact that the combinator molecule A is a multi-
plier! This shows that the Y combinator molecule can be
used as a fixed point combinator with any other chemlambda
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Computing

Aim:  To do widely distributed computing via
chemlambda.

Present Status: Working with toy models.



H** Graphical Lambda Calculus **L
H** Here we use mathematica graph representation.

H@aØbD represents an edge from node a to node b. This

means that we can translate our rule driven formalism to graphical

representation by just stripping the H@D from each edge rep. **L

H** Some improvements using Joshua Hermann'

s suggestion that we input Defer@tDrather than t,

and we have implemented a version of his program that converts the H@aØbD notaton

directly to a graphical picture. We use PGraf to illustrate an expression directly

and Graf5 to illustrate the reult of applying the graphical lambda rules to it. **L

H** Apply rules to the graph formalism **L

In[71]:=

rule101 = 8H@a_ Ø LD H@L Ø b_D H@L Ø MD H@M Ø d_D H@c_ Ø MD ß H@c Ø bD H@a Ø dD<;
rule102 = 8H@a_ Ø x_D H@x_ Ø FanD H@ Fan Ø b_D H@ Fan Ø c_D ß

H@a Ø FanD H@Fan Ø x D H@x Ø bD H@x Ø cD<;
rule103 = 8H@x_ Ø FanD H@ Fan Ø b_D H@ Fan Ø c_D ß H@Fan Ø x D H@x Ø bD H@x Ø cD<;
rule104 = 8H@a_ Ø x_D H@x_ Ø FanD H@ Fan Ø b_D H@ Fan Ø b_D ß

H@a Ø FanD H@Fan Ø x D H@x Ø bD H@x Ø bD<;
rule105 = 8H@x_ Ø FanD H@ Fan Ø b_D H@ Fan Ø b_D ß H@Fan Ø x D H@x Ø bD H@x Ø bD<;
rule106 = 8H@x_ Ø FanD H@ Fan Ø b_D ß H@Fan Ø x D H@x Ø bD<;
rule107 = 8H@a_ Ø LD H@L Ø b_D H@L Ø MMD H@MM Ø d_D H@c_ Ø MMD ß H@c Ø bD H@a Ø dD<;
H**rule108=8H@a_ØxDH@x_ ØFan<H@Fan ØM<ß H@x_ ØM<H@x_ ØM<H@a_ØFanD< **L

rule111 = 8H@a_ Ø LLD H@LL Ø b_D H@LL Ø MD H@M Ø d_D H@c_ Ø MD ß H@c Ø bD H@a Ø dD<;
rule112 = 8H@a_ Ø x_D H@x_ Ø FFanD H@ FFan Ø b_D H@ FFan Ø c_D ß

H@a Ø FFanD H@FFan Ø x D H@x Ø bD H@x Ø cD<;
rule113 = 8H@x_ Ø FFanD H@ FFan Ø b_D H@ FFan Ø c_D ß H@FFan Ø x D H@x Ø bD H@x Ø cD<;
rule114 = 8H@a_ Ø x_D H@x_ Ø FFanD H@ FFan Ø b_D H@ FFan Ø b_D ß

H@a Ø FFanD H@FFan Ø x D H@x Ø bD H@x Ø bD<;
rule115 = 8H@x_ Ø FFanD H@ FFan Ø b_D H@ FFan Ø b_D ß H@FFan Ø x D H@x Ø bD H@x Ø bD<;
rule116 = 8H@x_ Ø FFanD H@ FFan Ø b_D ß H@FFan Ø x D H@x Ø bD<;
rule117 = 8H@a_ Ø LLD H@LL Ø b_D H@LL Ø MMD H@MM Ø d_D H@c_ Ø MMD ß H@c Ø bD H@a Ø dD<;

PGraf@x_D :=

Show@GraphPlot@Last@Last@Reap@Evaluate@x êê. H Ø SowD@@1DDDDD, DirectedEdges Ø True,

VertexLabeling Ø TrueD, ImageSize Ø MediumD

SGraf@x_D := Last@Last@Reap@Evaluate@x êê. H Ø SowD@@1DDDDD

Graf5@x_D :=

Show@GraphPlot@Last@Last@Reap@Evaluate@Graf@xD êê. H Ø SowD@@1DDDDD, DirectedEdges Ø True,

VertexLabeling Ø TrueD, ImageSize Ø MediumD

Graf@t_D :=

Simplify@Defer@tD êê. rule101 êê. rule102 êê. rule103 êê. rule104 êê. rule105 êê.
rule106 êê. rule107 êê. rule111 êê. rule112 êê.

rule113 êê. rule114 êê. rule115 êê. rule116 êê. rule117 D
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In[31]:=

t = H@A Ø LD H@L Ø BD H@L Ø MD H@C Ø MD H@M Ø zD;
Graf@tD
PGraf@tD
Graf5@tD

Out[32]= H@C Ø BD H@A Ø zD
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In[109]:=

t = H@L Ø RD H@R Ø AD H@A Ø LD H@L Ø MD H@L' Ø MD H@M Ø ZD;
Graf@tD
PGraf@tD
Graf5@tD

Out[110]= H@R Ø AD HH@L£
Ø RD H@A Ø ZDL
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t = H@L Ø xD H@x Ø FanD H@Fan Ø MMD H@Fan Ø MMD H@MM Ø AD H@A Ø LD H@L Ø MD H@M Ø zD
H@LL Ø xxD H@xx Ø FFanD H@FFan Ø MMMD H@FFan Ø MMMD H@MMM Ø AAD H@AA Ø LLD H@LL Ø MD;

Graf@tD
PGraf@tD
Graf5@tD

H@AA Ø LLD H@MM Ø AD H@MMM Ø AAD HH@LL Ø xD H@A Ø zDL
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H** Now experimenting with a subgraph locator **L
rule200 = 8H@MM Ø x_D ß H@MM Ø MMD<;
Experi@t_D := Simplify@t êê. rule200 D

s = H@MM Ø aD H@MM Ø aD H@c Ø MMD H@a Ø cD;
Experi@sD
PGraf@Experi@sDD
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There is more to come.

The main point is that graphical lambda calculus and 
chemlambda can be done by 

local
asynchronous operations

on widely distributed graphs.
Hence the possibility of 

global and secure 
computations 
in this mode.

The connections with topology 
deserve deeper investigation.



Thank You!




