Chemlambda, universality and self-multiplication

Marius Buliga ! and Louis H. Kauffman >

! Institute of Matematics of the Romanian Academy
P.O. BOX 1-764, RO 014700, Bucharest, Romania
Marius.Buliga@gmail.com
2 Department of Mathematics, University of Illinois at Chicago
851 South Morgan Street, Chicago, Illinois, 60607-7045

kauffman@uic.edu

(Graphical Lambda Calculus and Knots)

This talk is not quite about knots, but
this slide gives a hint that knots and
fixed points are linked with one another.

_—

a={b}
b={a}

And why Topology and Recursion are Intertwined.

s
SIS

Pt

By

g
aEy

T
<4 -..' wy
- i |
il

= e

A
('L

._||.

[i
|

]
P,

; ...__.".n..-“_.. . |
] ; o o

: ST R e et K P ¥
..__..w“.“.. A_...wm. hEtl A L g A S

L

Duplicating Gremlin Meets Itself

/\D ~N
D05
VO =0

A quick review of lambda calculus
Lambda Notation
F = M\xy.f(z,y)
(Fx)y = f(z,y).

(note the non-associativity)
For example, If
F = Azy.y(yz),

then
(Fa)b=b(ba).

Church-Curry Fixed Point Theorem and Recursion

G = \x.F(xzx).
Gx = F(xzx).
GG = F(GG) Any F has a fixed point!

And Its Dangers
G = A\r. ~ (zx),
GG =~ (GQ).

This is the Lambda version of the Russell Paradox.

Rx = ~xx
RR = ~RR

Russell Paradox (K)not.

W]
S

A does not

belongs to A. belong to A.

For Lambda Calculus one resolves the paradox by
replacing equality by a reductive move.

G = \x.F(xx).
Ga ----- Beta Reduction
GG ----- > F(GG)

----- > F(F(GG))

Whence Recursion.
And recursion must be
controlled.

Non-Associative Formalism in Knot Diagrams
Label the arcs in a link diagram. Regard the label on the arc ¢
obtained by underpassing b from a as a product of a and b : c= ab.

p -~ C=ab
%
Here we abandon the notion of membership at a crossing and replace
it with an algebraic product. Think of the overcrossing line as acting
on the undercrossing line to produce the label for the continuation of

the undercrossing. This is an inherently non- associative formalism,
as the diagrams below demonstrate.

ab) c a(bc)
//;b\c -—-L_c_.————-\bi
A

b
. a

Knot-Logical Diagrammatic Lambda Calculus

Knot diagrams as non-associative formalism

\éb

/)\—b\ Multiplication at a Crossing

d

a ab (ab)c

(basic non-associativity)

(topological moves have
algebraic interpretations)

a ac |PC (ac)(bc)

Figure 23: Knot Diagrammatic Multiplication

\Ta

/’_b‘
\a

s

a(ya)
G
1. c=ab
A \‘r’ — (ab)a
8. b=ca | 4_pah)
Ya= a(Ya) 2. a=bc

Figure 24: Relations and Diagrams with Loops

2

@ 208 1y~ a(xa)

XA

Fixed points occur naturally in knot theory
but are handled not by lambda calculus, but by using an
algebra with topological relations.

We are exploring extensions

of knot theoretic topology by

the addition of diagrammatic
lambda calculus.

Lets use this glyph for
a
acting on itself.

dd

AT e)

multiply

Beta

lambda >

[Lx.F(x)]A -------- > F(A)

In the graphical representation, THERE
IS NO VARIABLE X.

multiply

Beta

Lambda >

This is our general graphical
representation with a multiplication
node, a lambda node and an F.

We aim to do lambda calculus and computational
generalizations of it by purely graphical, local moves on
graphs.

The algebra disappears.
There are no inputs or outputs.
Everything is done by changing local graphical

configurations. The actions can happen in a widely
distributed network of nodes.

G = M.F(xx) Ax.F(xx)
------ > F(G) by Beta reduction.

Basic Fixed Point
Combinator

In Topological
Graphical Lambda
Duplicate ° Calculus.

Fixed Point Combinator.
Note the adoption of a
duplication operation.

In some cases this can

e? be managed by

local operations
(as in DNA).

Beta

;

Y = WX (. (X)) Ay (X(yY)))

h
Ya ------ = a(Ya) by Beta reduction.
A,
Basic Y - Combinator
In Topological Graphical Lambda
Calculus.
ot

Figure 26: Topological Y - Combinator

Graphic Lambda Calculus

A \‘f(A A O
>
(a) (b) (c) (d) (e)

Figure 1: Basic pieces of GLC graphs

(a) (b)

Figure 2: (a) the K combinator, (b) encoding of a crossing in GLC

B e e N i

i R1b
m 9_(:5 X >— e

CO-COMM
LT TS

m+

LOC PRUN
T ‘y
/\

LOC PRUN

-

Figure 3: Local moves of GLC

LOC PRUN

LTS, T]

LOC PRUN ext2
2K Neey >@+ S

o

CO-COMM
LT

(a)

N,

(&

GLOBAL
FAN-OUT

¥ N

(b)

&4

Figure 5: (a) the CO-COMM move is local, (b) the GLOBAL FAN-OUT move is global

The Chemlambda formalism

O

ALY A A

(e)

(d)

(c)

(b)

(a)

L4

v

4

4

FAN-IN

CO-COMM

ol I X

CO-ASSOC
L =

Y YA

LOC
PRUNING

L T

LOC
PRUNING

L T

LEC
PRUNING

L T

LOC
PRUNING

L T

VO T

B = \zyz.z2(yz), B = l\zyz.y(zz), C = Azyz.xz2y,

| = \x.z, K = \zy.z, S = \axyz.zz(yz2),
W = lxy.xyy.

e
il

-0~

c = oo o

Figure 6: B,C,K,W combinators encoded in chemlambda

Gl

2 DIST

< T 1

PRUNING

1
FAN-IN @
é‘\ 1
s
@ b

MULT

A
™
PROPA A——
> A—>—. [_\

DIST A
>A+< A §<

@—A

DIST @ A
\\ A

A P Y
Pran .

Figure 8: Definition of self-multipliers, propagators, distrib-
utors

3>
N7
>
A
v

Figure 9: Propagator made from a multiplier and a distribu-
tor of the first kind

DIST A
(O
« A_> FAN-IN
£ TN C
= A . A+

Figure 10: Multiplier made from a distributor of the second
kind

G

Figure 11: Examples of guns

The Y combinator has the expression
Y = y.(Az.y(zx))(Az.y(xx))

and it has the following property: for any lambda term A
the expression Y A reduces to A(Y A). In particular, if A is
another combinator, then Y A is a fixed-point combinator for

A.

In lambda calculus the string of reductions 1s the follow-
ing sequence of beta moves:

YA — (Az.A(zx))(M. A(xx)) —
— A((A\x. A(zx))(A\z.A(zx))) = A(Y A)

We see that the during the reduction process we needed a
multiplication of the combinator A.

YA

Figure 12: the YA combinator molecule and a first beta
move

A

A

Figure 13: second beta move applied to the Y A molecule

DIST DIST
LT Ty = T
A A A

Figure 14: next step of reduction, two DIST moves

PROP
e %
A
A

YA beta > o
reduced

A

Figure 16: last two moves of the reduction of Y A to A(Y A)

Figure 17: the Y molecule is a gun

Computing

Aim: To do widely distributed computing via
chemlambda.

Present Status: Working with toy models.

(** Graphical Lambda Calculus *x*)
(** Here we use mathematica graph representation.
H[a-»b] represents an edge from node a to node b. This
means that we can translate our rule driven formalism to graphical
representation by just stripping the H[] from each edge rep. *#)

(** Some improvements using Joshua Hermann'

s suggestion that we input Defer[t]rather than ¢t,

and we have implemented a version of his program that converts the H[a-b] notaton
directly to a graphical picture. We use PGraf to illustrate an expression directly
and Graf5 to illustrate the reult of applying the graphical lambda rules to it. #*%)

(** Apply rules to the graph formalism =*=*)

rulelOl = {H[a_-> L] H[L->b_]H[L->M]H[M->d_] H[c_-> M] :» H[c > b] H[a > d]};
rulelO02 = {H[a_ -» x_] H[x_ -» Fan] H[Fan » b_]H[Fan - c_] =

H[a - Fan] H[Fan - x] H[x - b]H[x ->c]};
rulelO3 = {H[x_ - Fan] H[Fan » b_]J]H[Fan -» c¢_] » H[Fan - x] H[x - b]H[x ->c]};
rulelO4 = {H[a_ -» x_] H[x_ -» Fan] H[Fan -» b_]H[Fan -» b_] =

H[a - Fan] H[Fan - x] H[x - b]H[x - Db]l};
rulelO5 {H[x_ » Fan] H[Fan » b_]H[Fan » b_] :» H[Fan -» x] H[x - b]H[x - b]};
rulel06 {H[x_ -» Fan] H[Fan » b_] = H[Fan - x] H[x - b]};
rulel07 = {H[a_-> L] H[L->b_] H[L > MM] H[MM > d_] H[c_ » MM] :» H[c > b] H[a > d]};
(**rulelO08={H[a_-x]H[x_ -»Fan}H[Fan -M}:>» H[x_ -M}H[x_ -M}H[a_-Fan]} =*=*)

rulelll = {H[a_ - LL]H[LL->b_] H[LL->M]H[M->d_] H[c_ > M] » H[c > b] H[a > d]};
rulell2 = {H[a_ -» x_] H[x_ - FFan] H[FFan » b_] H[FFan » c_]
H[a - FFan] H[FFan - x] H[x - b] H[x - c]};
rulell3 = {H[x_ - FFan] H[FFan » b_] H[FFan » c_] = H[FFan - x] H[x - b]H[x - c]};
rulell4 = {H[a_ - x_] H[x_ - FFan] H[FFan » b_] H[FFan -» b_]
H[a - FFan] H[FFan - x] H[x - b] H[x - b]};
rulell5 {H[x_ - FFan] H[FFan » b_] H[FFan » b_] :» H[FFan - x] H[x - b]H[x - b]};
rulellé6 {H[x_ -» FFan] H[FFan » b_] =» H[FFan ->x] H[x - b]};
rulell7 = {H[a_ - LL] H[LL > b_] H[LL > MM] H[MM > d_] H[c_ -» MM] :» H[c > b] H[a > d]};

PGraf[x_] :=
Show [GraphPlot [Last [Last [Reap [Evaluate[x //. H-> Sow][[1]]]]], DirectedEdges -» True,
VertexLabeling » True], ImageSize -» Medium]

SGraf[x] := Last[Last[Reap[Evaluate[x //. H- Sow][[1]]]1]1]

Graf5([x_] :=
Show [GraphPlot [Last [Last [Reap[Evaluate[Graf[x] //. H- Sow][[1]]]]], DirectedEdges - True,
VertexLabeling -» True], ImageSize -» Medium]

Graf[t_] :=
Simplify[Defer[t] //. rulelOl //. rulelO2 //. rulelO3 //. rulelO4 //. rulelO5 //.
rulel06 //. rulelO7 //. rulelll //. rulell2 //.
rulell3 //. rulell4 //. rulell5 //. rulell6 //. rulell7]

t = H[A> L] H[L > B] H[L > M] H[C > M] H[M > z];
Graf[t]
PGraf[t]
Graf5[t]

ut[32)= H[C - B] H[A —» 2]

N

ut[33]=

/M\\

ut[34]=

In[109]:=
t = H[L-»> R]H[R>A]H[A->L]H[L->M]H[L' > M] H[M-> Z];
Graf[t]
PGraf[t]
Graf5[t]

Out[110= H[R > A] (H[L" > R] H[A > Z])

=

Out[111]= M - L

i

LI

Out[112]= zZ - A - R - L

t= H[L-> x] H[x » Fan] H[Fan -» MM] H[Fan -» MM] H[MM -» A] H[A » L] H[L - M] H[M > z]
H[LL » xx] H[xx » FFan] H[FFan » MMM] H[FFan -» MMM] H[MMM -» AA] H[AA -» LL] H[LL > M];
Graf[t]
PGraf[t]
Graf5([t]

H[AA - LL] H[MM -» A] H[MMM - AA] (H[LL - x] H[A > z])
(H[Fan » x] H[x > MM] H[x - MM]) (H[xx - MMM] H[xx - MMM] (H[FFan - LL] H[LL - xx]))

MMM » AA x —» Fan

f \LL L/ Y
-

FRan o &~ e M \AA/MM

There is more to come.

The main point is that graphical lambda calculus and
chemlambda can be done by
local
asynchronous operations
on widely distributed graphs.
Hence the possibility of
global and secure
computations
in this mode.

The connections with topology
deserve deeper investigation.

Thank You!

